
DOI 10.1105/tpc.112.106989
; originally published online February 26, 2013; 2013;25;694-714Plant Cell

Regina Feil, John Lunn, Zoran Nikoloski, Mark Stitt, Alisdair R. Fernie and Stéphanie Arrivault
Marek Szecowka, Robert Heise, Takayuki Tohge, Adriano Nunes-Nesi, Daniel Vosloh, Jan Huege,

 RosetteArabidopsisMetabolic Fluxes in an Illuminated 

 
This information is current as of October 15, 2013

 

 Supplemental Data  http://www.plantcell.org/content/suppl/2013/02/20/tpc.112.106989.DC1.html

References
 http://www.plantcell.org/content/25/2/694.full.html#ref-list-1

This article cites 98 articles, 32 of which can be accessed free at:

Permissions  https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X

eTOCs
 http://www.plantcell.org/cgi/alerts/ctmain

Sign up for eTOCs at: 

CiteTrack Alerts
 http://www.plantcell.org/cgi/alerts/ctmain

Sign up for CiteTrack Alerts at:

Subscription Information
 http://www.aspb.org/publications/subscriptions.cfm

 is available at:Plant Physiology and The Plant CellSubscription Information for 

ADVANCING THE SCIENCE OF PLANT BIOLOGY 
© American Society of Plant Biologists
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Photosynthesis is the basis for life, and its optimization is a key biotechnological aim given the problems of population
explosion and environmental deterioration. We describe a method to resolve intracellular fluxes in intact Arabidopsis thaliana
rosettes based on time-dependent labeling patterns in the metabolome. Plants photosynthesizing under limiting irradiance
and ambient CO2 in a custom-built chamber were transferred into a 13CO2-enriched environment. The isotope labeling
patterns of 40 metabolites were obtained using liquid or gas chromatography coupled to mass spectrometry. Labeling
kinetics revealed striking differences between metabolites. At a qualitative level, they matched expectations in terms of
pathway topology and stoichiometry, but some unexpected features point to the complexity of subcellular and cellular
compartmentation. To achieve quantitative insights, the data set was used for estimating fluxes in the framework of kinetic
flux profiling. We benchmarked flux estimates to four classically determined flux signatures of photosynthesis and assessed
the robustness of the estimates with respect to different features of the underlying metabolic model and the time-resolved
data set.

INTRODUCTION

Photosynthetic CO2 assimilation is central to life, and under-
standing its regulation and integration with end-product syn-
thesis is a major challenge in plant biochemistry. Existing
studies in plants mainly focused on defining metabolic pathways
and their subcellular compartmentation and studying the regu-
lation of component enzymes (Bauwe et al., 2010; Hibberd and
Covshoff, 2010; Stitt et al., 2010). In the past decade, high-
throughput methods have been applied to measure metabolites
involved in photosynthetic C metabolism (Cruz et al., 2008;
Timm et al., 2008; Arrivault et al., 2009; Suzuki et al., 2012), to
study the relation between enzyme activities and steady state
metabolite levels (Sulpice et al., 2010), to analyze gene ex-
pression (Biehl et al., 2005), to relate transcript levels to in vitro
activities of the encoded enzymes (Gibon et al., 2004), and to
estimate rates of turnover of individual enzymes (Piques et al.,
2009). An emerging picture is that in vitro activities of enzymes
only partly reflect the levels of transcripts, that many enzymes
exhibit slow turnover rates, and that there is little relation be-
tween in vitro activities of enzymes and the levels of individual
metabolites in photosynthetic C metabolism.

The most biologically important description of metabolism is
the set of metabolic fluxes that it generates. This represents the
integrated output of the molecular machinery and biochemical
characteristics studied by other high-throughput technologies. It
is also a key determinant of cellular physiology and growth (Blank
and Sauer, 2004). The goal of this study is to use stable isotope
labeling with 13CO2 to estimate fluxes in the well-characterized
photosynthetic metabolism in a land plant leaf. This is a chal-
lenging task given the complex topology and subcellular com-
partmentation of the pathways and the wide range of fluxes and
turnover times of the metabolites that are involved in them.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)

catalyzes the initial carboxylation reaction, in which CO2 is
added to the 5C carbon acceptor ribulose-1,5-bisphosphate
(RuBP) to form two molecules of 3-phosphoglycerate (3PGA).
Most of the 3PGA is used to regenerate RuBP in the Calvin-
Benson cycle (CBC). This involves the reduction of PGA to
triose-phosphates, a process that consumes the vast majority of
the NADPH and ATP generated in the light reactions, followed
by a series of condensation, cleaving, and phosphatase and
phosphorylation reactions that rearrange 3C triose-phosphate
skeletons into the 5C carbon acceptor RuBP. The net C gain (in
the ideal case, one-sixth of fixed C) is used to synthesize end
products: mainly Suc and starch. Some C is converted to or-
ganic acids and amino acids. This requires the assimilation of
additional CO2 in the anaplerotic reaction catalyzed by phos-
phoenolpyruvate carboxylase (PEPc).
Rubisco catalyzes a side reaction in which RuBP reacts with

O2 to form one molecule of 3PGA and one molecule of 2-
phosphoglycollate. Under current atmospheric conditions, in
organisms without a C concentrating mechanism, this side re-
action occurs at 25% of the rate of the reaction with CO2
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(Sharkey, 1988). 2-Phosphoglycollate is salvaged via a complex
pathway termed photorespiration, in which it is converted via
glycolate to glyoxylate, transaminated to Gly, decarboxylated to
Ser, and converted back via hydroxypyruvate and glycerate to
3PGA. This process results in a 25 to 30% decrease in the net
rate of C fixation and a 20% decrease in quantum yield (Foyer
et al., 2009; Bauwe et al., 2010).

In eukaryotic algae and plants, a further major complication is
introduced by subcellular compartmentation. Briefly, the CBC
and starch synthesis occur in the chloroplast, while triose-
phosphates are exported to the cytosol for conversion to Suc.
Photorespiration occurs in the chloroplast, peroxisome, cytosol,
and mitochondria. Organic acid and amino acid metabolism
occurs in the plastid, cytosol, and mitochondria, and large
amounts of these metabolites accumulate in the vacuole (for
details, see Supplemental Methods 1 online).

Pioneering isotope labeling experiments with 14CO2, which
were performed almost 60 years ago (Calvin, 1956), played a key
role in the discovery of the CBC (Benson, 2002). Since then,
isolated studies have analyzed 14C labeling kinetics at the
subcellular level and used this information to estimate fluxes at
selected reaction steps (Stitt et al., 1983). However, technical
challenges meant that most 14C labeling studies were restricted
to analyses of the rate of carboxylation and the distribution of
fixed C between end products. In the last 10 years, new ana-
lytical chemistry tools, like metabolomics, have increased our
knowledge of metabolism (Nunes-Nesi et al., 2005; Arrivault
et al., 2009; Stitt et al., 2010). The use of stable isotopes
(Schaefer et al., 1980; MacLeod et al., 2001; Schwender et al.,
2004a; Römisch-Margl et al., 2007), coupled with improvements
in analytical methods, has opened new possibilities for metab-
olism research (DellaPenna and Last, 2008; Saito and Matsuda,
2010).

Successful applications of 13C-labeling and gas chromatography–
time-of-flight–mass spectrometry (GC-TOF-MS) have been re-
ported for a range of species and tissues, including Escherichia
coli (Yuan et al., 2006; Haverkorn van Rijsewijk et al., 2011),
Saccharomyces cerevisiae (Birkemeyer et al., 2005), photoau-
totrophic cyanobacteria, Synechocystis sp (Huege et al., 2011;
Young et al., 2011), Arabidopsis thaliana (Huege et al., 2007;
Williams et al., 2010), soybean (Glycine max) embryos (Sriram
et al., 2004), Brassica napus (Schwender et al., 2004b, 2006),
and potato (Solanum tuberosum) tubers (Roessner-Tunali et al.,
2004). However, to date, there are relatively few reports that use
13CO2 to study metabolism in photosynthesizing plant tissue.
Furthermore, these studies usually analyzed individual leaves
that were harvested from the plant following incubation of part
of the leaf with 13CO2 and could be compromised by export
of enriched compounds to other parts of the leaf or the re-
mainder of the plant. Ito and Mitsumori (1992) measured 13C
incorporation into photorespiratory intermediates, several amino
acids, and sugars in intact sunflower (Helianthus annuus) leaves,
while Hasunuma et al. (2010) investigated labeling of CBC in-
termediates and sugar phosphates in tobacco (Nicotiana taba-
cum) leaf discs. Huege et al. (2007) demonstrated a method for
the full labeling of Arabidopsis rosettes by growing plants from
germination onwards in a sealed chamber in a 13CO2 atmo-
sphere and subsequently used GC-TOF-MS to study the decay

of 13C in a set of metabolites. Eisenreich and Bacher (2007)
suggested using 13CO2 as a universal precursor for in vivo ex-
periments in photosynthesizing plant tissues; however, these
authors focused their research on NMR analysis of pathways of
secondary metabolism.
The topology of photosynthetic C fixation pathways poses

a particular challenge for flux studies. Most methods for ana-
lyzing 13C enrichment patterns and estimating fluxes assume
steady state metabolic states and steady state labeling states
(reviewed in Ratcliffe and Shachar-Hill, 2006). Very little in-
formation about fluxes can be extracted from data obtained at
isotopic steady state following the feeding of 13CO2. On the
other hand, qualitative analysis of non–steady state labeling ki-
netics with 13C is extremely challenging due to the large number
of isotopomers (Antoniewicz et al., 2007; Young et al., 2008).
Such analyses are further complicated by the large range of
turnover times of metabolite pools, which span between <1 s
for many metabolites in the CBC to ;1 min for intermediates in
Suc synthesis to several minutes for intermediates of photo-
respiration (Stitt et al., 1983; Arrivault et al., 2009; for details, see
Supplemental Methods 2 online).
In this study, we used a custom-designed labeling chamber

to carry out short-term 13CO2 labeling of intact Arabidopsis
rosettes under ambient steady state conditions. Several
complementary analytical platforms were applied, including GC-
TOF-MS and two recently developed liquid chromatography–
tandem mass spectrometry (LC-MS/MS) platforms (Lunn et al.,
2006; Arrivault et al., 2009), allowing quantitative determination
and 13C enrichment calculation of 40 metabolites from the CBC,
Suc and starch synthesis, glycolysis, amino acid and organic
acid metabolism, as well as trehalose-6-phosphate (Tre6P)
metabolism. The main aims of this study were as follows: (1) to
qualitatively test expectations about the labeling kinetics of
metabolites in photosynthetic metabolism in a higher plant, (2) to
use labeling kinetics to provide information about what pro-
portion of the metabolite pool is likely to be involved in photo-
synthetic metabolism, and (3) to use this information to estimate
a selected set of fluxes through photosynthetic end products,
which can be compared with independent measurements to
benchmark the data and model.

RESULTS

Construction of the 13C Labeling System

Several aspects had to be reconciled in the design of a chamber
to perform 13CO2 labeling of whole Arabidopsis rosettes under
physiological conditions (see Supplemental Figure 1 online): (1)
The volume had to be as small as possible to minimize the time
lag after introducing 13CO2 but large enough to hold a 5-week-
old Arabidopsis plant in a pot; (2) the chamber had to be built
from transparent material that did not drastically alter light
quality; and (3) the rosette has to be quenched in ambient light
and without allowing entry of 12CO2 due to the rapid turnover of
CBC metabolites (see Introduction). We used commercially
available 380-mL in vitro plant culture boxes (Magenta GA-7).
While rapid quenching in large-leaved species is best performed
by freeze clamping the leaf between two liquid N2 precooled
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metal blocks (Badger et al., 1984; Quick et al., 1991), this is
not practical for Arabidopsis rosettes. Instead, the plants were
grown with plastic foil under the rosette and quenched by
flooding them with a large volume of liquid N2 poured down
a funnel inserted through a small inlet in the side of the box. This
allowed quenching without shading the plants or opening the
box.

Arabidopsis Rosette Labeling Experiment

Five-week-old plants were rapidly transferred from growth
chambers to the labeling chamber, which was continuously
washed through the whole experiment by a stream of air (5 liters
min21) prepared from cylinders containing pure N2, O2, and
13CO2 that had been mixed in a gas blender (see Methods).
Plants were harvested 5 and 10 s and 1, 3, 10, 20, and 60 min
after the start of labeling. Shorter pulses were not possible due
to the dead space of the chamber and the CO2 inside the plant
leaf. Due to the small size and rapid turnover of pools in the
CBC, these treatments do not allow resolution of individual
fluxes in the CBC (see below) but do facilitate estimation of
overall flux in the CBC and the fluxes in photorespiration as well
as starch and Suc synthesis.

Analysis of Isotopomers of 40 Metabolites

Samples were analyzed using three analytical platforms, namely,
GC-TOF-MS, ion exchange LC-MS/MS, and reverse-phase LC-
MS/MS. This allowed quantification of 40 metabolites from the
CBC, starch and Suc biosynthesis, the photorespiratory path-
way, amino acid metabolism, glycolysis, the tricarboxylic acid
cycle (TCAC), and Tre6P metabolism. The mass distribution of
all metabolites determined shifted to a higher mass-to-charge
ratio with increasing labeling time, as illustrated for 3PGA, which
is the first product of CO2 fixation (see Supplemental Figure 2
online). Labeling kinetics were reproducible between three bi-
ological replicates (e.g., average 13C enrichment and SD were
65.8 and 4.9% for RuBP isotopomer, corresponding to the fully
labeled molecule after 1 h of labeling and 40.8 and 3.5% for Ala).
The total content of the measured metabolites did not change
significantly between different labeling times (see Supplemental
Table 1 online).

The Pattern of Labeling Can Be Separated by
k-Means Clustering

To obtain an overview of the labeling kinetics, the average 13C
enrichment profiles over the three biological replicates for all
measured metabolites were subjected to k-means clustering
based on Euclidian distance. To determine number of clusters,
k, the crude rule of thumb by Mardia et al. (1979), was used,
whereby

k�
ffiffiffiffiffiffiffiffi
N =2

p
¼ 4:47

and N ¼ 40 is the number of metabolites. This analysis
resulted in four clusters with very different labeling patterns
(Figure 1A). The abbreviations used in the following text are

defined in the legend of Figure 1. The first cluster, which was
labeled the fastest, comprises all the CBC intermediates,
together with ADP-Glc (ADPG) and 2-phosphoglyceric acid
(2PGA). The second cluster consists of Glc-1-phosphate
(G1P), Glc-6-phosphate (G6P), UDP-Glc (UDPG), and Suc-6-
phosphate (Suc6P), which are intermediates in Suc synthesis,
two photorespiratory intermediates (glycerate and Ser), maltose,
pyruvate, and Ala. Gly is assigned to the third cluster, but this
may be because a large proportion of the pool is not labeled at
all (see below). The third and fourth clusters comprise slowly
labeled metabolites (hexose sugars, organic acids, other amino
acids, Tre6P, and trehalose).
Visualization of the clusters on a simplified scheme of pho-

tosynthetic metabolism revealed that metabolites in a given
pathway usually show similar labeling kinetics (Figure 1B).
Similar labeling kinetics for two metabolites implies that the
metabolites are in, or are close to, isotopic equilibrium. All CBC
intermediates are in close isotopic equilibrium with each other
and with ADPG, which is an intermediate in the starch synthesis
pathway, and 2PGA, which is located exclusively in the cytosol
and is a precursor for organic acid synthesis. Similarly, G6P,
G1P, UDPG, and Suc6P, which are predominantly located in the
cytosol and are intermediates of Suc synthesis, cluster together,
as do pyruvate and Ala, which is synthesized from pyruvate, and
Tre6P and trehalose. It is reassuring that the known topology of
the metabolic pathways can be broadly recapitulated by an
analysis of the labeling kinetics. However, it should be noted
that this analysis does not provide information about the mag-
nitude of fluxes. Isotopic equilibrium can be established by
a rapid interconversion of two metabolites, even if there is
negligible net flux. Even if labeling kinetics do reflect net flux
between two metabolites, the absolute value of the flux will
depend on the pool sizes.

Pool Sizes and Compartmentation of Metabolites

The absolute levels of the metabolites are shown in Table 1.
There is a large dynamic range, even for metabolites in the same
pathway (e.g., 11.7 and 173 nmol g fresh weight [FW]21 for G1P
and G6P, respectively), with the extremes being 0.55 (ADPG)
and >1000 (Suc, Ser, Fru, and Glc) nmol g FW21.
Pool sizes in the vacuole, plastid, and cytosol were estimated

using nonaqueous fractionation (Gerhardt et al., 1987). Non-
aqueous fractionation does not generate pure organelle prepa-
rations, but instead, a set of fractions that are partially enriched
in different subcellular compartments. The subcellular distribu-
tion of metabolites of interest is estimated by (multidimensional)
regression against marker traits (usually enzyme activities) that
are specific for a particular compartment. However, it is not
possible to accurately determine the subcellular level in a com-
partment that contains only a small proportion of the total pool
(Gerhardt et al., 1987). There were large differences between
metabolites in their subcellular distributions (Table 1). Some
metabolites, such as RuBP, sedoheptulose-1,7-bisphosphate
(SBP), Fru-1,6-bisphosphate (FBP), ADPG, UDPG, malate, fu-
marate, and isocitrate were largely in a single compartment,
while others like dihydroxyacetone phosphate (DHAP), 3PGA,
hexose phosphates, hexoses, most amino acids, and organic
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Figure 1. Overview of 13C Labeling Kinetics from Primary C Metabolism.
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acids were present in two or more compartments. This re-
sembles results from earlier studies in spinach (Spinacia oler-
acea) (Gerhardt et al., 1987; Riens et al., 1991; Winter et al.,
1994), maize (Zea mays) (Weiner and Heldt, 1992), barley (Hor-
deum vulgare) (Winter et al., 1993), and Arabidopsis (Krueger
et al., 2011) leaves.

The Labeling Kinetics for CBC Intermediates and Glycolytic
Intermediates Follow Similar Patterns

Figure 2A provides detailed information about the labeling ki-
netics of individual CBC intermediates. Label was incorporated
at the earliest time points, leading to a rapid decrease in the
proportion of the metabolite present as the 12C isotopomer,
a progressive increase and then decline of intermediate forms,
and a steady increase in the 13C isotopomer in which all C atoms
are labeled. In Figures 2B and 2C, the average 13C enrichment is
plotted on a log scale to better illustrate the enrichment kinetics.
Even at the earliest time points, all CBC intermediates displayed
similar relative labeling (see Supplemental Figure 3A online for
additional plots). When 13C enrichment of CBC intermediates
was plotted against 13C enrichment of 3PGA, which is the first
product of the CO2 assimilation, very high values were obtained
for the Pearson correlation coefficient (see Supplemental Figure
3B online). This parallel labeling is in accordance with the very
short half-times estimated from pool size and pathway stoichi-
ometry (Arrivault et al., 2009). One exception was FBP, which
was labeled more slowly than DHAP, from which FBP is formed,
and more slowly than metabolites located further downstream in
the CBC, like SBP, sedoheptulose-7-phosphate (S7P), and
RuBP. This indicates that a significant part of the FBP pool is not
directly involved in the CBC.

Another unexpected finding was that CBC intermediates do
not rapidly become fully labeled (Figure 2; see Supplemental
Figure 3A online). After 10 min, the average 13C enrichment was
;70% for RuBP, 3PGA, DHAP, and S7P, 65% for SBP, and
55% for FBP and F6P. Even after 60 min, the most highly la-
beled metabolite, S7P, was only enriched to 92%, while the
other CBC intermediates showed labeling around 70% (see
Supplemental Table 2 online). One explanation for this behavior
might be internal recycling of 12C isotope from unlabeled pools
(see Discussion).

Labeling Kinetics for Intermediates in Starch and
Suc Synthesis

Starch is synthesized from F6P via G6P, G1P, and ADPG in the
chloroplast, while Suc is synthesized from triose-phosphates

that are exported to the cytosol and converted via FBP, F6P,
G6P, G1P, UDPG, and Suc6P to Suc. The labeling kinetic of
ADPG was only slightly slower than labeling kinetics for CBC
metabolites (Figure 2; see Supplemental Figure 3A online). It
should be noted that the ADPG pool is very small, with the result
that ADPG will turn over rapidly even though flux through it is
much smaller than in the CBC (see later). Slower labeling was
observed for F6P, followed by G6P, G1P, UDPG, Suc6P, and
even slower labeling for Suc (Figure 2 and see below). These
results confirm that the intermediates in Suc synthesis have
a much shorter turnover time than those in the CBC (Stitt et al.,
1983). Some of the F6P, G6P, and G1P are located in the
chloroplast (Stitt et al., 1983; Gerhardt et al., 1987). These
plastid pools are expected to label rapidly; labeling kinetics of
plastid F6P should resemble those of other CBC intermediates,
while those of ADPG provide a minimum estimate for the la-
beling kinetics of plastid G6P and G1P pools. Therefore, the
labeling kinetics of the cytosolic F6P, G6P, and G1P pools
would be anticipated to be even slower than those of the total
pools of these metabolites.
Surprisingly, there was a marked difference between the la-

beling kinetics of G1P and G6P (Figure 2A; see Supplemental
Figure 3A and Supplemental Table 2 online). These two me-
tabolites are interconverted via a reversible reaction catalyzed
by phosphoglucomutase. The 12C isotopomer decay of G1P
was much slower than that of G6P. After 20 min, it almost
reached a plateau in which over half of the pool still consisted of
nonlabeled isotopomer. When the 13C isotopomers are in-
spected, the intermediate isotopomers rise and fall, and the fully
labeled form is dominant at 20 and 60 min of G1P (Figure 2A).
This isotopomer labeling pattern indicates that there are two
pools of G1P, of which one is subject to labeling and the other is
effectively unlabeled. This labeling pattern is unlikely to be
generated by an influx of unlabeled 12C into G1P because this
would lead to a slower but monophasic decrease of the 12C
isotopomer and the accumulation of incompletely labeled 13C
isotopomers. UDPG showed a similar, though not so marked,
response. This contrasts with Suc6P, which after 20 to 60 min
was almost as heavily labeled as the CBC intermediates and
more heavily labeled than G6P, G1P, and UDPG, despite being
located downstream of the latter metabolites in the pathway of
Suc synthesis (Figure 2; see Supplemental Figure 3A, Supplemental
Table 2, and Supplemental Data Set 1 online).
The incomplete labeling of G1P might potentially be due to

another molecule that is not involved in photosynthetic metab-
olism but coelutes with G1P from the liquid chromatography
and has the same mass and fragment ion as G1P. We checked
the specificity of the G1P measurements by showing that two

Figure 1. (continued).

(A) k-means clustering. Gray lines show the 13C enrichment (calculated as in Methods) of individual metabolites, and magenta lines show average 13C
enrichment of all metabolites in the cluster.
(B) Schematic representation of labeling kinetics. The scheme distinguishes the plastidic compartment but not the cytosol, peroxisomes, mitochondria,
and vacuole. Metabolites are highlighted according to cluster following the color scheme in (A). Solid and double-headed arrows represent irreversible
and reversible reactions, respectively. Dashed arrows represent conversions involving several steps.
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Table 1. Amount and Subcellular Distribution of Compounds in Arabidopsis

Compounds Amount (nmol g FW21) Plastid (%) Cytosol (%) Vacuole (%)

3PGAa 200 6 45 44 56 0
2PGAa 20 6 4.5 0 100 0
ADPGa 0.55 6 0.05 100 0 0
DHAPa 2.7 6 0.6 23 77 0
F6Pa 86.4 6 14.6 34 66 0
FBPa 8.9 6 2.3 70 30 0
G1Pa 11.7 6 2.4 8 92 0
G6Pa 173 6 51 17 83 0
RuBPa 46.7 6 8.2 83 17 0
S7Pa 28.0 6 5.4 82 18 0
SBPa 9.6 6 3.0 75 25 0
UDPGa 35.7 6 5.7 0 100 0
R5Pa 1.2 6 0.2 49 51 0
X5P+Ru5Pa 8.7 6 2.6 100 0 0
Suc6Pa 0.82 6 0.36 0 100 0
PEPa 52.5 6 9.9 6 94 0
Gly 543 6 59 28 33 39
Glycerate 169 6 65 31 47 22
Ser 4,265 6 326 36 22 42
myo-inositol 922 6 108 66 0 34
Suc 3,432 6 167 19 31 50
Trehalose 20.8 6 3.0 50 0 50
Glu 3,682 6 1,042 30 42 28
Malate 1,820 6 547 0 0 100
2-Oxoglutarate 63.1 6 18.8 6 35 59
Pyruvate 99.2 6 35.6 24 31 45
Val 139 6 16 32 0 68
Ile 38.9 6 4.5 33 0 67
Pro 641 6 90 31 24 45
Thr 459 6 58 42 0 58
Fumarate 1,154 6 47 0 0 100
Asp 1,050 6 346 19 46 35
Phe 53.1 6 6.9 48 0 52
Asn 380 6 25 30 17 53
Fru 1,458 6 30 0 12 88
Glc 2,669 6 475 12 23 65
Arg 164 6 18 42 0 58
Tyr 9.8 6 1.2 45 0 55
Citrate 1,916 6 505 0 0 100
Shikimate 35.9 6 7.6 37 22 41
Succinate 84.0 6 48.2 4 17 79
Ala 228 6 24 16 14 70
Gln 2,349 6 177 11 0 89
Nitrate 224,000 6 4,100 0 0 100
Aconitate 14.5 6 5.5 0 0 100
Isocitrate 33.5 6 3.6 0 0 100
Lys n.d. n.d. n.d. n.d.
Maltose n.d. n.d. n.d. n.d.
Met 9.9 6 1.4 42 13 45

Data are from three independent nonaqueous gradients. 2PGA is assumed to be only in the cytosol and its amount to be 10% of the 3PGA amount.
Subcellular distributions (%) were calculated using a three-compartment model (plastid, cytosol, and vacuole). For metabolites marked with an “a,”
a two-compartment model was used (plastid and cytosol). n.d., not determined.
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Figure 2. 13C Labeling Kinetics of Metabolites from CBC, Starch, Suc, and Trehalose Biosynthesis Pathways.



different enzymatic reactions that use G1P completely remove
the corresponding signal (see Supplemental Figure 4 online).
This behavior could not be explained by differences in pool
sizes, since the G1P pool is 14 times smaller than G6P (Table 1),
or subcellular compartmentation, as G1P and G6P showed
a similar distribution between the cytosol and chloroplasts when
Arabidopsis tissue was fractionated on nonpolar density gra-
dients (Table 1). We also checked if the deviant response of G1P
was due to a large proportion being located in cells that did not
perform photosynthesis. The petiole and major veins were dis-
sected from leaf lamina and the cut material was analyzed by
LC-MS/MS. The small difference observed in the distribution of
G1P and G6P (55 and 44% in petiole and 45 and 56% in leaf
lamina for G1P and G6P, respectively) could not explain the
incomplete labeling kinetic of G1P.

Labeling Kinetics of Sugars

Suc was gradually labeled over the entire 60-min period, while
Glc and Fru were only very slowly labeled (Figure 3A). This
confirms results from earlier studies with 14CO2 labeling (Jensen
and Bassham, 1966; King et al., 1967; Stitt et al., 1980), which
established that Suc is the major product of photosynthesis. Glc
and Fru are formed by hydrolysis of Suc by invertase, which is
evidently a slow process in Arabidopsis, at least under the ex-
perimental conditions used here.

Maltose showed faster labeling than Suc. While 13C enrich-
ment in Suc rose gradually through the entire time course (1, 9,
22, and 45% at 3, 10, 20, and 60 min), the equivalent values for
maltose were 5, 44, 37, and 47% (Figure 3A; see Supplemental
Table 2 online). The labeling kinetics of individual isotopomers
indicates that about half the maltose pool is subject to labeling,
while the other half is effectively unlabeled (see Supplemental
Figure 5 and Supplemental Data Set 1 online). As the absolute
pool size of Suc is much larger than that of maltose (Table 1),
this does not alter the conclusion that Suc is the main product of
photosynthesis. Nevertheless, it raises questions with respect to
the source of the maltose.

Labeling Kinetics of Photorespiratory Intermediates

The three metabolites from photorespiration detected by our
analysis (Gly, Ser, and glycerate) showed moderately rapid labeling
(Figure 3B). 13C enrichment of Gly displayed different kinetics
compared with that in Ser and glycerate. After a short lag, Gly labels
rapidly for 10 min, but the speed of labeling then abruptly slows
down, whereas labeling of glycerate and Ser continues to increase.
The 12C isotopomer of Gly decreases to;80% of the total Gly pool

in the first 10 min and remains at this value for the remainder of the
experiment (Figure 4A). Furthermore, by 10 min, most of the;20%
decrease of the 12C isotopomer can be accounted for by an in-
crease of the isotopomer containing two 13C atoms. As for G1P,
this labeling pattern strongly indicates that there are two pools of
Gly in the rosette, with one (;20% of the total pool) being involved
in photorespiration, and another pool (;80% of the total) not par-
ticipating in this process. A similar but less marked response was
seen for Ser and glycerate (Figures 4B and 4C).

Labeling of Amino Acids and Organic Acids

Photosynthetic chloroplasts lack a complete glycolytic sequence
(Stitt and Rees, 1980; Andriotis et al., 2010). Synthesis of organic
acids and amino acids therefore starts with the conversion of
3PGA to 2PGA and phosphoenolpyruvate (PEP) in the cytosol.
PEP is then further metabolized via pyruvate kinase (PK) and PEPc.
The labeling kinetics of 3PGA, which is present at equivalent

levels in the chloroplast and cytosol (Table 1), and 2PGA, which
is exclusively located in the cytosol (Stitt et al., 1980), are almost
identical (see Supplemental Table 2 and Supplemental Data Set
1 online), suggesting a high exchange rate between the plastid
and the cytosol (Stitt et al., 1983). PEP could not be analyzed
due to the instability of this metabolite during extraction.
Pyruvate showed progressive labeling for the first 10 to 20 min

but then slowed down such that only about half the total pool
was labeled at all, but this part was mainly the isotopomer
containing three 13C. As already discussed, this response in-
dicates the presence of two pools: one that is labeled with
a half-time of 10 to 20 min and one that is still effectively un-
labeled even after 60 min and is presumably not involved in the
pathways that use newly fixed C. The rate of labeling in the first
10 to 20 min is slower than for 3PGA but still marked, especially
if the enrichment is normalized by subtracting the proportion
that remains as the 12C isotopomer after 60 min.
Labeling of organic acids and amino acids varied with respect

to the speed of labeling and the proportion labeled (Figure 3C; see
Supplemental Figure 6 online). Organic acids involved in the
TCAC, like isocitrate, 2-oxoglutarate, succinate, fumarate, and
malate, were labeled relatively slowly, with only a small proportion
being labeled at 60 min, as previously demonstrated (Tcherkez
et al., 2005, 2009). As previously shown (Gauthier et al., 2010;
Tcherkez et al., 2012a) the labeling of 2-oxoglutarate and Glu was
also very slow. Many other metabolites downstream of PK and
PEPc were also only weakly labeled, including malate, fumarate,
and succinate (Figure 3C; see Supplemental Figure 6 online; see
also Discussion). Some amino acids showed more rapid labeling.
This included Ala and Asp, which are formed by transamination

Figure 2. (continued).

(A) Time course of mass distribution. The relative abundance of each isotopomer (mn) for a given metabolite is represented; n is the number of 13C
atoms incorporated.
(B) and (C) 13C enrichment. The x axis corresponds to the labeling time on a log10 scale. In (C), the y axis corresponds to 13C enrichments on a log10

scale.
Values (%) are average of three biological replicates 6 SD, with the exception of Suc6P and Tre6P at time 180 s (n = 1). For clarity, SDs are not shown in
(B) and (C).
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reactions from pyruvate and oxaloacetate. Ile and Val, which are
synthesized from pyruvate, also displayed quite rapid labeling of
a subpool, representing;20% of the total pool in the rosette. The
relatively rapid labeling of aromatic amino acids is consistent with
them being synthesized from E4P, which is an intermediate in the
CBC, and PEP. Asn, Thr, Lys, and Met, which are derived from
Asp, were labeled only slowly and partially.

Labeling of Tre6P, Trehalose, and Myo-Inositol

The 12C isotopomer decay of Tre6P was slow and almost linear
over the time course of the experiment (Figure 2A; see
Supplemental Figure 3A online), and, after 60 min of labeling, the
unlabeled form still represented the predominant Tre6P iso-
topomer (;40%). Tre6P showed mild 13C enrichment, with up to
21% at 60 min (Figures 2B and 2C). Trehalose also showed only
mild 13C enrichment (i.e., up to 9, 18, and 14% at 10, 20, and 60
min, respectively) (Figures 2B and 2C; see Supplemental Table 2
online). As the trehalose pool is 370-fold smaller than the Suc
pool and is much less weakly labeled, it is only a very minor
product. Based on their enrichment, Tre6P and trehalose clus-
tered in the same group (Figure 1).

Labeling of myo-inositol was very slow (see Supplemental
Figure 6A online), with 13C enrichment of ;3% after 60 min of
labeling (see Supplemental Table 2 online).

Utilization of Experimental Data for Flux Estimation by
Kinetic Flux Profiling

Methods available to model fluxes from labeling data are outlined in
Supplemental Methods 2 online. To model fluxes from our data set,
we chose to use kinetic flux profiling (KFP) (Yuan et al., 2006, 2008).
While some of the existing approaches allow usage of different
fragments and, thus, potentially more informative data sets, KFP
facilitates the computation of individual reaction fluxes in complex
networks from incomplete data sets. KPF uses a mass action–like
differential equation model for the washout of the unlabeled fraction
of metabolic pools (compare Methods and Supplemental Methods
3 online). In the original formulation, KFP was used to fit fluxes
locally, using prior knowledge of the reactions that take place in the
vicinity of a metabolite (see example 3 in Supplemental Methods 3
online). Here, we extend the applicability of KFP by providing
a global fit to the labeling data. The global fit is performed via
a simulated annealing, the results of which are then used in gra-
dient descent, both with respect to a variance-weighted mean
squared error function (see Supplemental Methods 4 online), and
confidence intervals are estimated by standard procedure (see
Supplemental Methods 5 online).
The metabolic model used in our calculations (Figure 5A; see

Supplemental Methods 6 online) comprises the CBC, photores-
piration, and starch, Suc, trehalose, andmyo-inositol biosynthesis.

Figure 3. 13C Enrichment of Sugars, Organic Acids, and Amino Acids.

Sugars (A), photorespiration cycle intermediates (B), and organic acids and amino acids (C). Values (%) are average of three biological replicates 6 SD.
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Fluxes from PEP to organic acids and amino acids were omitted
because inherent features of the pathway topology prevent
accurate estimation of flux from the 13CO2 labeling kinetics in
this part of metabolism (see Discussion). As we later show, the
overall flux is low, and its omission does not introduce a large
error into estimates of fluxes in the remainder of photosynthetic
metabolism. CBC intermediates were assumed to be located
exclusively in the plastid (Table 1) except for DHAP, 3PGA, F6P,
and FBP. As the plastidic and cytosolic pools of 3PGA and
DHAP are in rapid isotopic equilibrium (Stitt et al., 1983), they

were modeled as a single pool. Further evidence for this as-
sumption is provided by the observation that 2PGA, which is
exclusively in the cytosol, showed similar labeling kinetics to
3PGA and DHAP, which are distributed between the plastid and
cytosol (Table 1, Figure 2A; see Supplemental Figure 3 online).
Starch and Suc biosynthesis are known to be exclusively lo-
cated in the plastid and cytosol, respectively (Stitt et al., 1980),
with the plastidic and cytosolic pools showing different labeling
kinetics (Stitt et al., 1983). Nonaqueous fractionation data were
therefore used to explicitly measure the plastid and cytosolic
pools of F6P, G6P, and G1P in our material (Table 1; see
Supplemental Table 3 online) and to provide experimental evi-
dence that Suc6P is almost exclusively located in the cytosol.
Tre6P was assumed to be cytosolic. Compartmentation of the
photorespiratory intermediates Gly, Ser, and glycerate was ini-
tially neglected (i.e., we assumed isotopic equilibrium between
pools in different subcellular compartments). Reactions were
classified as irreversible or in rapid isotopic equilibrium (Figure
5A; see Supplemental Methods 6 online) based on experimental
knowledge about their in vivo reversibility (Stitt et al., 1980,
2010). To simplify the fitting procedure, RuBP labeling dynamics
were used as a proxy for input to the system (see Methods) with
the correction for the possibility of spawning unlabeled mole-
cules (see Supplemental Methods 6 online) under the assump-
tion of random label distribution in each mass isotopomer. We
included Suc6P and Tre6P in the model but omitted Suc and
trehalose because we could not obtain labeling information
for their complete C backbone (see Supplemental Table 4 on-
line). However, this does not affect the reliability of the model.
Indeed, it means that these products are treated in the same
manner as starch, for which 13C enrichment data were not
available.
The distribution of net fluxes in the entire network can be

described as a non-negative linear combination of five flux
modes (Figures 5B to 5F), which are themselves in metabolic
steady state. Each mode comprises the CBC, including the C
fixation by Rubisco and the pathway to one of the five out-fluxes
of the system (loss of CO2 in photorespiration and the bio-
synthesis of starch, Suc, trehalose, and myo-inositol). The CBC
is included in all five flux modes because part of the fixed C is
used for RuBP regeneration to maintain the steady state. The
calculations require three assumptions: (1) the labeling data are
obtained from a metabolic system that is in steady state (i.e., all
concentrations of metabolites and fluxes are constant) (see
Supplemental Table 2 online), (2) enzymes do not display iso-
tope discrimination, and (3) the metabolic pools are well mixed
(i.e., there is negligible channeling).
Application of the extended KFP method to the metabolic

model provided estimates of intracellular fluxes that provide the
best overall variance-weighted fit (Press et al., 2007) to the ex-
perimentally determined pool sizes and the labeling kinetics for
depletion of the 12C isotopomer (Figure 5; see Supplemental
Table 3 and Supplemental Data Set 1 online). These reference
flux estimates were benchmarked by comparing them with
those expected during photosynthesis in a C3 plant like Arabi-
dopsis. Based on the substrate specificities of Rubisco, the
rate of carboxylation should be fourfold higher than oxygenation
(see Introduction and values in Sharkey, 1988). Also, Suc

Figure 4. Time Course of Mass Distribution of Photorespiration Cycle
Intermediates.

Gly (A), glycerate (B), and Ser (C). The relative abundance of each iso-
topomer (mn) for a given metabolite is represented, and n corresponds to
the number of 13C atoms incorporated in the metabolite. Values (%) are
average of three biological replicates 6 SD.
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Figure 5. Pathway Model, Elementary Flux Modes, and Flux Estimates.

(A) Pathway model. The model includes the CBC, photorespiration, and Suc, starch synthesis, myo-inositol, and trehalose synthesis. There is explicit
separation of cytosolic (blue, subscript c) and plastidic pools (yellow, subscript p) that are not equilibrated by transporters. Plastidic and cytosolic pools
of 3PGA and DHAP are treated as a single pool (gray) that is in isotopic equilibrium (Stitt et al., 1983) due to rapid exchange via the triose-phosphate
phosphate transporter. Metabolite pools involved in photorespiration are shown in pink. Reactions are set as irreversible (single-headed arrow) or
reversible (double-headed arrow), based on experimental data (Bassham and Krause, 1969; Stitt et al., 1980).
(B) to (F) Elementary flux modes of the model: synthesis of starch (B), synthesis of Suc (C), synthesis of myo-inositol (D), synthesis of trehalose (E), and
photorespiration (F).
(G) Simulation of best fit. Measured data for the proportion of the total pool present as the 12C isotopomer are shown as crosses (6SD) and the predicted
decay dynamics of the 12C isotopomer modeled using the unadjusted data set (red line) and after excluding the inactive pool (blue line). Gray dotted
lines indicate the inactive pool. For Tre6P and myo-inositol (asterisks), which have a small total pool size, the active pool assumption is not applied. The
RuBP panel shows the input models for the influx to the pool of 3PGA (purple solid line) and Gly (purple dotted line). The corresponding crosses indicate
the data used for parameter estimation.
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synthesis is approximately twofold faster than starch synthesis
in Arabidopsis in the conditions used in our study (Gibon et al.,
2009), while Tre6P synthesis is an order of 1000 slower (Lunn
et al., 2006).

Modeled Fluxes

We first modeled fluxes assuming that the entire pool of each
metabolite is involved in photosynthetic flux (Figure 5H, case All;
full results are presented in Supplemental Tables 5 and 6 online).
The value of the variance-weighted mean squared error of the
best fit was much larger than one (the variance-weighted mean
square error of 8035 and 12 estimated parameters), suggesting
unreliable goodness of fit. The estimated rate of RuBP oxy-
genation was about a third of the rate of carboxylation
(3.72:10.70), and the rate of starch synthesis was ;2.6 times
higher than the rate of Suc synthesis (6.32:2.45). While the re-
lation between carboxylation and oxygenation is close to ex-
pectations, the model seriously overestimates the rate of starch
synthesis and underestimates the rate of Suc synthesis. The
95% confidence intervals for the estimated fluxes are given in
Figure 5H; interestingly, the data enforce a small and left-
skewed estimate of the trehalose synthesis rate, causing it to fall
out of its confidence interval. Furthermore, the fitted curves for
the washout of 12C showed very poor agreement to measured
data for Gly, UDPG, and G1P and relatively poor agreement for
G6P, F6P, FBP, and Suc (Figure 5G, red lines). This analysis
indicated that the poor performance of the model might be as-
sociated with the attempt to fit, in particular, the modeled fluxes
to the experimental data for Gly, G1P, and UDPG. Significantly,
the washout curve for the 12C isotopomer for each of these
metabolites plateaued before 60 min, and a substantial pro-
portion of the pool that had become labeled was present as the
fully labeled 13C isotopomer (Figure 2; see Supplemental Figures
3 and 6 online). As already discussed, this pattern may arise due
to the presence of two pools, of which only one is involved in
photosynthetic metabolism.

The assumption was made that part of the total metabolite
pool in the rosette does not participate in photosynthesis be-
cause it is located in the vacuole and/or nonphotosynthetic
cells. The model was reimplemented after adjusting the pool
sizes to only include pools that are likely to be involved in
photosynthesis. In the following, this is termed “the active pool
assumption.” The active pool was set as the difference between
the total pool and the nominal value of the 12C isotopomer after
60 min. The proportion of the metabolite that was not labeled at
this time was subtracted from the 12C isotopomer content at
each time point (Figures 2 and 4; see Supplemental Figures 3
and 6 online) for the purpose of defining the washout kinetics

and from the total pool (Table 1) for the purpose of defining the
absolute pool size. Metabolites for which this led to a major
correction include Gly, G1P, and UDPG (active pool equivalent
to ;25, 40, and 63% of the total pool, respectively; Figures 2
and 4). As already explained, the isotopomer labeling pattern for
these metabolites is in agreement with the existence of two
separate pools, rather than incomplete labeling of one pool. The
active pool assumption was not applied to Tre6P and myo-
inositol because their 12C isotopomers had not reached a pla-
teau in the time span of our experiment.
As shown in Figure 5H, case Active, the modeled flux for

RuBP carboxylation (12.95 nmol g FW21 s21 RuBP) was ;2.49-
fold higher than the rate of oxygenation (5.20 nmol g FW21 s21

RuBP), and the modeled rate of Suc synthesis (7.11 nmol g
FW21 s21 C atoms) was ;2.2-fold higher than the rate of starch
synthesis (3.19 nmol g FW21 s21 C atoms). The modeled fluxes
to myo-inositol and to trehalose via Tre6P were very low with
values of 0.05 and 0.0005 nmol g FW21 s21 C atoms, re-
spectively. The modeled curves for washout of 12C isotopomers
closely matched the experimental data (Figure 5G, blue lines),
leading to values for the variance-weighted mean squared error
of 2145, which is fourfold smaller than in the previously exam-
ined scenario without the active pool assumption.
The goodness-of-fit value reflects the extent to which the

model of photosynthetic metabolism matches the gathered
data. The current relatively high values for goodness of fit are
probably due to aspects of compartmentation, which are not yet
accounted for in our underlying metabolic model. We chose
to restrict the representation of compartmentation in the model
to parameters for which experimental evidence was available
and not to seek to improve fit by adding additional untested
assumptions.
However, we note that the relatively high goodness of fit would

not result from the choice of excluding fluxes from PEP to or-
ganic acids and amino acids due to the complexity of modeling
these pathways. This might lead to unreliable flux estimates from
our model if the excluded fluxes were high. We summed the 13C
detected at 60 min in organic acids and amino acids downstream
of PEP (Figure 1B) and compared it to the summed 13C found in
all measured metabolites. The organic acids and amino acids
accounted for only 2.6% of the total 13C. This is probably an
overestimate, since this comparison omits 13C in starch and
because some of the 13C in organic acids and amino acids is
incorporated by PEPc (see Discussion for flux estimates).

Estimation of Unlabeled Influx

The model still does not address the observed incomplete la-
beling of the CBC intermediates, many of which are thought to

Figure 5. (continued).

(H) Selected fluxes and rates for the two scenarios included that were used for benchmarking. The rates of Rubisco carboxylation and oxygenation are
given as RuBP consumption (i.e., use of CO2 or O2, respectively). Fluxes were estimated for two scenarios (1) All, using unadjusted 12C isotopomer
decay and metabolite content data sets. (2) Active, using the pool of each metabolite that is actively involved in photosynthetic fluxes. The inactive pool
was nominally defined as the proportion that remains as 12C isotopomer at 60 min. It was subtracted from the 12C isotope kinetic (i.e., the 60-min value
is set as zero). The absolute pool (Table 1) was also decreased in the same proportion. For each scenario, flux estimates are denoted by the optimal
value obtained with the fit “optimum” and the “lower” and “upper” 95% confidence limits obtained from the Monte-Carlo simulation.

Photosynthetic Fluxes in Arabidopsis 705



be unique to photosynthesis. To address this issue, we treated
the C atoms of all the CBC intermediates as one well-mixed pool
to which there is an unlabeled influx of C atoms and simulated
the dynamics of enrichment. This is justified by the short turn-
over times and near-isotopic equilibration of the intermediates
(see Supplemental Figure 3B online). The labeling behavior of
the CBC intermediates corresponds to that of RuBP. In this
simplified model (see Supplemental Figure 7 and Supplemental
Table 7 online), the labeling dynamics of this single pool is
governed by five fluxes: gross fixation, net fixation (equivalent to
net out-flux from the cycle), photorespiration out-flux, photo-
respiration influx, and an unlabeled influx (see Supplemental
Figure 7A online). This model was fitted to the washout of RuBP
and the enrichment of the influx to the CBC from photorespi-
ration, described by an exponential function (see Supplemental
Figures 7B and 7C online). We again used the variance-
weighted mean squared error function. We note that while the
influx from photorespiration to the CBC in the full flux model
relied on the pool sizes of the metabolites participating in pho-
torespiration, here, this is no longer the case as we directly used
the fit to the washout dynamics of glycerate. The best fit to the
experimental data for RuBP is obtained by including an addi-
tional unlabeled influx of 0.0017 nmol g FW21 s21 C atoms. This
is equivalent to ;0.02% of gross C fixation (see Supplemental
Figure 7F online). This indicates that the incomplete labeling
kinetics of CBC intermediates can be almost fully attributed to
the influx of incompletely labeled C from photorespiration (see
Supplemental Figures 7D and 7E online). This simplified model
also provides an estimated ratio of carboxylation to oxygena-
tion, with the latter being approximately threefold higher. This is
in good agreement with the expectation (between three and
four; see above) but is somewhat higher than the prediction from
the full model implemented with the active pool assumption
(only 2.49-fold higher; see above).

Robustness of the Full Model to Alterations in
Experimental Values

We further examined these differences in the modeled ratio of
carboxylation to oxygenation by considering further mod-
ifications of the full model in which, in addition to Tre6P and
myo-inositol, we did not apply the active pool assumption to the
following: (1) the two photorespiratory intermediates glycerate
and Ser and (2) glycerate, Ser, and (as an example of for many
possible CBC intermediates) triose-phosphates, denoted by
Active 2 and 3, respectively, in Supplemental Table 8 online. The
modeled ratio of carboxylation to oxygenation rose to 3.0 in
Active 2, whereas it remained fairly low (2.68) in Active 3. These
results show, not unexpectedly, that the modeled fluxes are
sensitive to the model used, and the experimental data values
that are supplied to the model.

We also investigated the robustness of the full model to other
changes in experimental values. This is an alternative approach
to that of Antoniewicz et al. (2006), who established the relative
importance of measurements by linking flux variances with the
variances of measurements (see Discussion). Supplemental
Figure 8 online shows the log-fold change of the relative dif-
ference of flux estimates with respect to the reference flux

estimates (given in Figure 5) for each changed input. Successive
alterations of the PGA pool size between 50 and 125% of the
reference values resulted in little change in CBC flux until PGA
was decreased to 50%, with little effect on photorespiration and
a shift to increased Suc synthesis at 125% PGA. In addition,
there was a more pronounced decrease of the flux to starch at
50% PGA and only slight changes in flux to myo-inositol and
photorespiration (see Supplemental Figure 8 online). Changing
the pool size of ADPG to either 50 or 125% of the nominal value
had little effect on CBC and photorespiration, but it resulted in
an increase of flux to Suc and a decrease of flux to starch.
Changes in the pool size of UDPG decreased the modeled flux
through the CBC and, especially, photorespiration and also
decreased starch synthesis but had little effect on the flux to
Suc. Decreasing the Gly pool to 50% resulted in a decrease of
all flux estimates, while decreasing it to 75 or increasing it to
125% lead to a decrease in the flux to starch and a slight in-
crease of flux through photorespiration and to Suc. A pro-
gressive increase of the pool size of Ser from 50 to 125% of its
nominal value led to a marked decrease of the modeled flux
through CBC and photorespiration, with a mixture of effects on
the starch and Suc synthesis. We also conducted robustness
analysis to quantify the stability of the estimated flux to a simu-
lated dramatic change in subcellular compartmentation of G6P
(see Supplemental Figure 9 online). Successive alterations of the
compartmentation of the G6P pool between the cytosol and
chloroplast from 99:1, 80:20, 60:40, 40:60, to 1:99 resulted in
only a mild decrease in flux through the CBC, negligible effects
on photorespiration, an increase of fluxes to Suc, a decrease
of flux to starch, and negligible effects on trehalose and myo-
inositol synthesis.

DISCUSSION

We modeled photosynthetic fluxes by exposing the rosette of an
intact Arabidopsis plant to 13CO2, determining kinetic changes in
isotope patterns of 40 metabolites of primary metabolism and
analyzing the data using an extended KFP approach. Our ap-
proach to flux estimation differs from that used previously in
plants (Rontein et al., 2002; Schwender et al., 2004a). These
studies used steady state labeling to address a series of im-
portant biological questions, including the role of Rubisco in
developing seeds, the regulation of oil seed metabolism, and
the interaction between primary metabolism and biosynthetic
pathways. However, steady state labeling is not applicable to
photosynthesis because CO2 is the only substrate, and the
isotopic steady state will not provide an informative labeling
pattern for the purpose of estimating fluxes. In a recent elegant
study, Young et al. (2011) modified the formulation to facilitate
modeling of isotopic nonstationary pools in Synechocystis
and provide the first metabolic flux model of a photoauxotroph.
Their study provided a comprehensive flux map for all CBC re-
actions and some side reactions, including those catalyzed by
Glc-6-phosphate dehydrogenase, malic enzyme, and the pho-
torespiratory pathway. It also identified pathways that might
compromise cyanobacterial productivity. We used an extension
of the KFP approach, as it allowed us to estimate fluxes through
photosynthetic end products and to benchmark them against
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classically determined flux signatures of photosynthesis. Unlike
the approach of Young et al. (2011), in which metabolic pool
sizes are fitted as free parameters, we constrained the model
with measured pool sizes obtained by mass spectrometry, in-
cluding the use of nonaqueous fractionation, to provide in-
formation on subcellular pool sizes.

Before we discuss the model, some features of the experi-
mental data per se should be addressed. Using k-means clus-
tering analysis, we were able to demonstrate a clear temporal
sequence of labeling, with CBC intermediates, ADPG, and 2PGA
labeling rapidly, followed by metabolites in Suc synthesis and
photorespiration, then pyruvate, Ala, and aromatic amino acids,
with organic and other amino acids being labeled very slowly or
even negligibly. These clusters closely reflect known pathway
topologies. The labeling dynamics also fit those expected
from pathway stoichiometry and pool sizes (Stitt et al., 1983;
Gerhardt et al., 1987; Benson, 2002; Arrivault et al., 2009). In
contrast with the situation in cyanobacteria (Young et al., 2011),
the labeling kinetics of the CBC intermediates were not clearly
discriminated. Labeling of all measured CBC intermediates
closely followed that of 3PGA. The estimated half-lives of CBC
intermediates are almost all <1 s in Arabidopsis leaves (Arrivault
et al., 2009). Resolution of fluxes within the CBC in leaves will
require even earlier harvests after introducing 13CO2, which is
hardly possible due to the time needed to exchange the CO2 in
the chamber and within the leaf or the use of conditions in which
the rate of photosynthesis is far lower than that used in this study.

Our data set contain some rather unexpected features. These
include (1) the slow labeling kinetics of FBP, (2) the rapid labeling
kinetics of maltose, (3) the very incomplete labeling of UDPG
and G1P compared with metabolites upstream (F6P and G6P)
and downstream (Suc6P) of them in the pathway of Suc syn-
thesis, (4) the very slow and incomplete labeling of many organic
acids and especially the Gln 2-oxoglutarate aminotransferase
(GOGAT) pathway intermediates Gln, Glu, and 2-oxoglutarate,
and (5) the incomplete labeling of all pools including the CBC
intermediates. Another important feature is the differential dy-
namics of labeling of the various pools, which raises the ques-
tion as to which time scale is the most appropriate for modeling.
In their study of 13C labeling of tobacco plants, Hasunuma et al.
(2010) reported similar labeling kinetics for many metabolites to
those reported here. However, their data analysis was restricted
to estimating turnover rates.

We implemented an extension to the KFP approach that
allows us to estimate photosynthetic fluxes from the 12C-
isotopomer washout kinetics of 16 metabolites. The underlying
metabolic model includes prior knowledge about pathways, the
reversibility of reactions (Gerhardt et al., 1987; Arrivault et al.,
2009), topology, compartmentation (Gerhardt et al., 1987; Table
1), rate of equilibration of label between compartments by the
triose-phosphate transporter (Stitt et al., 1983), and experi-
mental information about total pool sizes and their distribution
between the plastid and cytosol (Table 1; see Supplemental
Table 3 online). The flux estimates were benchmarked against
signature flux ratios of photosynthesis previously defined by gas
exchange and 14C labeling. For this purpose, we used the ratio
of the carboxylation and oxygenation reactions of Rubisco and
ratio of the fluxes to Suc and starch. In Arabidopsis at ambient

CO2, these should be approximately (2.5 to 3):1 and 2:1, re-
spectively (Häusler et al., 2000; Cegelski and Schaefer, 2006;
Gibon et al., 2009; Bauwe et al., 2010). It should be noted that
although the photorespiratory flux estimate in Synechocystis
(Young et al., 2011) was even lower than the value cited above,
this is likely to be explained by an efficient C concentrating
mechanism in this species that suppresses the oxygenase re-
action of Rubisco (Kaplan and Reinhold, 1999).
Flux modeling using unadjusted experimental data returned

flux ratios that were far from the expected ratios. Furthermore,
for many metabolites, the modeled washout kinetics showed
a poor fit to the experimental data. Inspection of the full labeling
kinetics of individual metabolites revealed that in many cases
only part of the total metabolite pool is involved in photosyn-
thesis. Flux modeling using pool sizes that had been corrected
to consider only pools actively participating in photosynthetic
metabolism gave values of 2.5:1 and 2.2:1 for the carboxylation/
oxygenation ratio and the Suc/starch ratio, respectively, a good
agreement between the modeled washout kinetics and the ex-
perimental data. A further flux, which modeled to trehalose via
Tre6P, was very low (0.0005 nmol g FW21 s21 C atoms). This
corresponds to 0.15 nmol Tre6P g FW21 h21, which is in
agreement with the synthesis rate of Tre6P measured by Lunn
et al. (2006) after the addition of Suc to starved seedlings. In-
terestingly, realistic estimates for the carboxylation/oxygenation
ratio were obtained without information about labeling of the
initial photorespiratory intermediate 2-phosphoglycolate. While
it will be important to extend our technical platform to include
this metabolite, among others, this points to the robustness of our
approach and also shows that flux estimates can be obtained using
larger and more slowly labeled pools like Gly, Ser, and glycerate.
The correction of pool sizes to exclude pools that do not

participate in photosynthesis is supported by the labeling ki-
netics and, in the case of Suc synthesis, by a comparison of the
labeling kinetics of metabolites located further downstream in
the pathway. Nevertheless, this analysis begs the question how
active and inactive metabolite pools are discriminated. The most
likely explanation is spatial compartmentation, which could oc-
cur at various levels, including cellular, subcellular, and within-
organellar microcompartmentation. For Gly, Ser, glycerate, and
many organic acids, nonaqueous fractionation indicated that
a large part of the total pool is indeed located in the vacuole. For
UDPG and G1P, we evaluated subcellular distribution and
whether the pool sizes of these metabolites were different in
parts of the leaf that are not photosynthetically active, namely,
the venal tissues. Neither approach pinpointed the location of an
inactive pool; nevertheless, two other possibilities remain. First,
bioinformatic analysis of Arabidopsis metabolite profiles re-
vealed patterns suggestive of microcompartmentation of me-
tabolism within organelles (Krueger et al., 2011), as previously
postulated for a pool of UDPG that is involved in cellulose
synthesis (Amor et al., 1995). Secondly, recent studies in Arab-
idopsis and potato implicate the presence of as yet unidentified
G1P transporters at the plastid and plasma membranes (Fettke
et al., 2011). Further analyses will be required to fully understand
the exact mechanisms by which the active and inactive pools
of these metabolites are separated. Given the rapid advance of
techniques for spatial resolution of metabolism (Aharoni and
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Brandizzi, 2012), it is likely that the exact reason underlying the
unexpected labeling may become apparent in future experiments.

Returning to other unexpected features of our data, the slow
labeling of FBP indicates that a substantial part of the total FBP
pool is not directly involved in the CBC. This is unlikely to be
explained by slower labeling of a cytosolic pool because the
latter is small (Table 1) and is in isotopic equilibrium with the tri-
ose-phosphates (Stitt et al., 1983). One possible explanation
might be binding of FBP on Rubisco active sites (Von Caemmerer
and Quick, 2004).

Another noteworthy feature is the rapid labeling of maltose.
Maltose is produced during starch degradation at night (Stitt
et al., 2010). However, it is unlikely that rapid labeling of maltose
is a result of transient starch degradation, since the labeling is
very fast, meaning that starch granules would have to be rapidly
degraded in the light, which has not been observed (Zeeman
et al., 2002) except under special atypical conditions (Stitt and
Heldt, 1981). A more likely hypothesis is de novo biosynthesis of
maltose in the light, possibly in the chloroplasts. Mutagenesis of
AGPase to promote in vivo activity led to an increase in maltose
levels in the light (Hädrich et al., 2012). 14CO2 labeling studies
of spinach chloroplasts detected very-short-term labeling of
maltose from 14CO2 (Linden et al., 1975; Schilling, 1982; Linden
and Schilling, 1984). As this molecule was asymmetrically labeled,
its formation cannot be attributed to the action of b-amylase on
starch. This mechanism would also explain why the maltose is not
completely labeled in our experiments.

The labeling kinetics of organic acids are extremely slow. Until
recently (Zell et al., 2010), these had been considered to be
minor products of photosynthesis, although net synthesis is
required to provide C skeletons for amino acid synthesis. It was
also surprising that GOGAT pathway intermediates like Glu and
2-oxoglutarate show very slow labeling. Fluxes through the
GOGAT pathway include the refixation of ammonium released
by Gly decarboxylase and are therefore of the same order as the
rate of photorespiration (Foyer et al., 2009). Indeed, we esti-
mated that <2.6% of the fixed 13C moved into organic acids and
amino acids that lie downstream of pyruvate, supporting the
small flux through amino acids of negligible effect to the other
flux estimates (see Supplemental Table 9 online).

Net synthesis of organic acids and organic acids requires an
anaplerotic reaction, which is catalyzed by PEPc in plants. PEPc
incorporates 13CO2 into the C1 position of oxaloacetate. As
a result of rapid equilibration with malate and fumarate, the label
is rapidly randomized between the C1 and C4 positions
(Tcherkez et al., 2005). This label will then be converted to other
organic acids via the TCAC. It should be noted that total 13C
incorporation into organic acids and amino acids will therefore
overestimate the flow of 13C from the CBC. Pyruvate can be
formed via PK or from malate via NADP- or NAD-malic enzyme
or via a direct side product of Rubisco, in which pyruvate is
produced at ;0.7% of the rate of 3PGA (Pearce and Andrews,
2003). It is not facile to use mass spectrometric data to dis-
criminate between the fluxes toward organic acid and amino
acid formation via PEPc, malic enzyme, the side reaction of
Rubisco, PK, and pyruvate dehydrogenase. This would require
site-specific labeling data, which could only be obtained by
a suite of enzymatic cleavage reactions, resulting in a massive

increase in sample number and data complexity. For this reason,
we did not attempt to model fluxes from the CBC to organic
acids and amino acids.
One potential way to circumvent this problem in the future

may be to attempt simultaneous 13C and 15N feeding studies.
Another perhaps simpler approach would be to extend the mass
spectrometry analysis platform using NMR to evaluate posi-
tional isotopomers at the atomic level (Tcherkez et al., 2011,
2012b). However, it is important to note that such analyses are
currently technically restricted for two reasons. First, due to
sensitivity issues, NMR experiments still require large sample
sizes (Kruger et al., 2008); to perform such experiments would
thus necessitate the growth of a massive number of plants and
require a huge acquisition time. Second, to date, a method for
efficient and rapid 15N labeling of leaf material is not available.
These hurdles notwithstanding, such an experiment remains an
exciting future prospect, as is the extension of modeling strat-
egies to further characterize the fluxes in these pathways.
At a qualitative level, the low level of label in GOGAT inter-

mediates implies that 2-oxoglutarate is internally recycled, with
very little de novo synthesis and/or is obtained from a preexisting
unlabeled pool. In agreement with this notion, it has been pro-
posed that 2-oxoglutarate is synthesized in the light from a pre-
existing pool of citrate (Tcherkez et al., 2012a, 2012b). More
generally, the slow labeling of organic acids and amino acids
derived from them is consistent with the idea that glycolysis and
the TCAC are inhibited in the light, when the TCAC operates in
a noncyclic manner (Tcherkez et al., 2009, 2012a; Sweetlove
et al., 2010). The very low enrichment in organic acids like iso-
citrate, fumarate, and malate can also be explained because the
vast majority of these metabolites are located in the vacuole
(Table 1; Lips and Beevers, 1966a, 1966b; Steer and Beevers, 1967).
Another interesting feature of our data set is the incomplete

labeling of the CBC intermediates, including metabolites that are
unique to the CBC like SBP and RuBP. A similar finding was
reported in a recent study in tobacco leaves (Hasunuma et al.,
2010) as well as an earlier, more focused study that determined
the 13C labeling of the 3PGA pool in Quercus rubra (Delwiche
and Sharkey, 1993). Incomplete labeling of CBC intermediates
indicates the presence of an unlabeled influx that dilutes the
13CO2 that is fixed by Rubisco and/or dilutes metabolic pools
involved in regeneration of RuBP. Our computational analysis
demonstrates that the incomplete labeling of CBC intermediates
can be almost completely explained by the incomplete labeling
of the C that returns to the CBC from photorespiration. It is likely
that this is the result of a slow exchange of labeled C in the pools
of Gly, Ser, and glycerate that are directly involved in pho-
torespiration with pools of Gly, Ser, and glycerate that are not
directly involved in photorespiration and act as a temporary
reservoir of unlabeled C that is slowly introduced into the CBC
(see above). A best fit of the simplified model was obtained by
adding a further very small additional influx of unlabeled C,
equivalent to ;0.02% of the gross fixation. This could derive
from a variety of sources, including very slow degradation of
starch (Weise et al., 2006) and refixation of CO2 that is respired
from unlabeled substrates in nonphotosynthetic cells in the leaf.
The simplified model yielded a slight increase in the value

for the rate of carboxylation relative to oxygenation (to 3.02,
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compared with 2.87 and 2.49 in the full model implemented with
total pools and with active pools, respectively). The estimate from
the simplified model is closest to the expected range of 3 to 4
(Sharkey, 1988; Cegelski and Schaefer, 2006), while when the full
model is used, a better fit for this output, but not for other outputs,
was obtained when it was implemented with total pools rather
than the active pool assumption. We interpret this as indicating
that these models represent approximations that do not fully
represent a more complex situation, where there is probably
partial label exchange between two or more pools of various in-
termediates. Nevertheless, the relation between the modeled
rates of carboxylation and oxygenation are relatively robust
against these changes in the model and experimental inputs. The
same held for tests in which the levels and compartmentation of
other metabolites were altered. This is an alternative approach to
robustness to that used by Antoniewicz et al. (2006), who es-
tablished the relative importance of measurements by linking flux
variances with the variances of measurements. However, in the
context of a plant leaf, which contains many cell types and sub-
cellular compartments, sources, or errors may not be fully cap-
tured by just considering the variance of the data. It also requires
consideration of the potential impact of multiple metabolite pools,
which may participate to differing degrees in the flux in question.

In summary, we were able to establish an experimental setup
to perform short-term 13CO2 labeling of Arabidopsis rosettes, in
a manner that allowed rapid quenching of metabolism, to de-
termine the labeling kinetics of 40 metabolites of primary C
metabolism and to model the major fluxes during photosyn-
thesis via kinetic flux profiling. Implementation of an approach
that discriminates between active and inactive metabolite pools
and only takes the active pools into consideration returned flux
ratio estimates in keeping with those canonically reported. This
finding demonstrates that it is possible to use stable isotope
feeding alongside mass spectrometry profiling to gain insights
into the dynamics and fluxes in a metabolic system as complex
as photosynthesis in a C3 leaf. Our study also indicates the
importance of information about metabolite compartmentation
and suggests that its use will be a prerequisite for modeling of
photosynthetic, and probably other metabolic processes, in mul-
ticellular eukaryotic tissues. Future application of the response of
the metabolic network of photosynthesis to environmental or ge-
netic perturbation will be essential to deepen our understanding of
the metabolic regulation of this key process and may have im-
plications for the improvement of crop yield and ultimately the
redirection of C to high value natural products. In addition, utili-
zation of this approach to study the even more complex photo-
synthesis pathways, like that exhibited in C4 plants such as maize,
may provide important enabling insights into harnessing this
pathway in synthetic biology approaches to enhance the efficiency
of photosynthesis of C3 species.

METHODS

Chemicals

13CO2 (isotopic purity 99 atom percentage) was purchased from Campro
Scientific. All other chemicals were purchased from Sigma-Aldrich, Roche,
or Merck.

Plant Growth

Arabidopsis thaliana, accession Columbia-0, was grown under 8/16-h
day/night cycles at an average irradiance of 120 µmol m22 s21, tem-
peratures of 22/20°C, and 50% relative humidity. Plants were grown in
individual 6-cm-diameter pots, with water/gas-permeable plastic foil
(Aquafol) between the rosette and the soil. Plants with fully expanded 5-
week-old rosettes (stage 3.90; Boyes et al., 2001) were used for 13CO2

feeding experiments and subcellular metabolite level determination.

13CO2 Feeding Experiments

The gas mixture was prepared using mass flow controllers (Brooks In-
strument), one controller per gas type. Each gas type was supplied
separately at a fixed flow rate and mixed in a single PVC tube, resulting to
a final concentration of 78% N2, 21% O2, 400 ppm 13CO2, and a final flow
of 5 liters min21. After passing through a humidifier, the gas mixture was
supplied to the inside of the transparent labeling chamber (Magenta GA-7
plant culture box), of volume 380 mL, by three transparent PVC pipes
placed on the top rear of the box in such a way that the gas stream was
directed to the plant rosette. These highly transparent boxes allow the
transmission of 97% of the irradiance. Therefore, a photon flux density of
115 µmol m22 s21 (as measured in the box with a LI-250A light meter; Li-
Cor) was provided by a FL-460 lighting unit from Walz. The labeling
chamber was continuously washed with this mixture through the whole
experiment.

Within a maximum of a few seconds, it is possible to completely
remove 12CO2 from the atmosphere in the labeling chamber and maintain
this state throughout the entire experiment. To estimate the removal rate
of 12CO2, an empty labeling chamber was washed with the same gas
mixture as during the experiment (flow 5 liters min21), and the 12CO2

concentration was tracked using an infrared CO2 gas analyzer (Li-Cor LI-
800). After 3 to 5 s, the 12CO2 concentration was negligible, approximating
0 ppm. In addition, we estimated the time of the exchange of gases in
the chamber by constructing a mathematical model: Given that the
volume of the chamber (V) and the gas flow (F) are known, the influx and
efflux are the same, and unlabeled CO2 is rapidly mixing with 13CO2 inside
the chamber, the time course of the 12CO2 content inside the chamber
can be described by an exponential function, whose half-life-period is
given by t1=2 ¼ ln2$V=F. The estimated t1=2 for the gas in the chamber with
volume of 380 mL is 3 s. In addition, we calculated the residence time
(volume/flow rate) in the humidifier to be 6 s (flow rate of 5 liters min21 and
volume of 500 mL). Since the gas flow was constant during the entire
experiment, the residence time of the humidifier should not affect the 12C
wash out time in the box.

The experiment was started 2 h after the onset of light in the growth
chamber, and the last labeled plant was harvested 1 h before the offset of
lights. Individual plants in their pot were quickly moved from the growth
chamber to the labeling chamber (<5 s) and quenched 5 or 10 s and 1, 3,
10, 20, or 60 min after the start of labeling in a random manner. Three
biological replicates were obtained for each labeling condition. Metab-
olism was quenched directly in the chamber by pouring a large volume of
liquid nitrogen over the rosette through a funnel that was placed through
a small outlet in the side of the box and held just above and slightly to the
side of the plant in such a way as to avoid shading the rosette. All frozen
plant material above the plastic foil was collected and stored at 280°C.

Determination of Metabolite Levels and Isotope Distributions

Prior to utilization, plant material was ground to a fine powder using
a Retsch ball-mill. For GC-TOF-MS, the levels of all metabolites were
quantified essentially as described by Roessner et al. (2001). Metabolites
were extracted from 100 mg (fresh weight) of frozen plant powder,
and derivatization was performed as described by Fiehn et al. (2000). The
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GC-TOF-MS was run using the same settings as detailed by Lisec et al.
(2006). The resulting chromatograms were processed using TagFinder
software. Analytes were manually identified using the TagFinder plug-in of
the TagFinder software (Luedemann et al., 2008) and the reference library
mass spectra and retention indices housed in the Golm Metabolome
Database (http://gmd.mpimp-golm.mpg.de; Kopka et al., 2005). In-
terpretation of gas chromatography–electron impact fragments derived in
GC-TOF-MS analysis were performed based on previously published
detailed EI fragmentation pattern of trimethylsilylated and methoxiami-
nated carbohydrates (DeJongh et al., 1969; Laine and Sweeley, 1973;
MacLeod et al., 2001; Sanz et al., 2002) and amino acids (Abramson et al.,
1974; Leimer et al., 1977). Furthermore, interpretation was supported by
the mass shifts observed upon in vivo 13C labeling (Huege et al., 2007).
Sincemass fragments comprising the full metabolite C backbone, such as
M+ (molecular ion) or M-15+ (mass fragment generated by the loss of CH3

+

group), were often mostly present at low intensities or even below their
detection limit, alternative fragment ions for mass isotopomer analysis,
proposed by Huege et al. (2007), were used (see Supplemental Table 4
online).

For LC-MS/MS quantification, metabolites were extracted from 15 mg
(fresh weight) of frozen plant powder as described by Lunn et al. (2006)
and Arrivault et al. (2009). Suc6P and Tre6P were measured as described
by Lunn et al. (2006). Other measurements were performed as described
previously (Arrivault et al., 2009), but mass spectrometry settings were
adapted for the quantification of all isotopomers of the compounds as
shown in Supplemental Table 10 online. The run was divided into four
segments with dwell times of 100ms or less, adapted to obtain aminimum
of 15 scans per chromatogram. For the nucleotide sugars ADPG and
UDPG, the isotopomers were restricted to labeling occurring in the
hexose, but the fully labeled isotopomers were also monitored. For the
partially labeled isotopomers of 2-oxoglutarate and succinate, two labeling
alternatives were possible and monitored, considering the label being
present in the product ion or not. For these isotopomers, signal peak
areas from both alternatives were summed. In the case of 2PGA and
3PGA, which could be separated by the liquid chromatography condition
used, the chromatograms obtained with the standards were of poor
quality compared with the ones observed in plant extract. Consequently,
quantification was not performed for these compounds, and the data
presented are solely based on signal peak areas obtained in extracts. The
obtained peaks were integrated using the Thermo Finnigan processing
software package LCQuan-2.5.

The electron impact fragmentation of trimethylsilylated and methox-
iaminated metabolite derivatives (analytes), which are observed in routine
metabolite profiles using gas chromatography–mass spectrometry (GC-
MS) technology (see for example Fiehn et al., 2000; Lisec et al., 2006),
require thorough interpretation of gas chromatography–electron impact
fragmentation patterns and knowledge concerning the sum formula of
each analyzed mass fragment when using 13C-isotope labeling. By
contrast, the LC-MS/MS method allows the quantification of the whole C
backbone of the metabolites, which is highly beneficial when calculating
13C fractional enrichment. Since mass spectrometry detects ionized
compounds separated by their mass-to-charge ratio, the mass-to-charge
ratio of 13C-labeled compounds increases by an amount that equals the
number of incorporated 13C atoms (see the example in Supplemental
Figure 2 online). Therefore, by determining the ratio of intensity of the
monoisotopic ion and its isotopic ions, the ratio of stable isotope labeling
can be quantified (Hasunuma et al., 2010).

Both GC-TOF-MS and LC-MS/MS matrices were subsequently pro-
cessed using the Corrector software tool (http://www-en.mpimp-golm.
mpg.de/03-research/researchGroups/01-dept1/Root_Metabolism/smp/
CORRECTOR/index.html). After correction, quantification of the metab-
olites was performed based on calibration curves obtained with authentic
standards whose matrices were also corrected. Relative isotopomer

abundance (mn) for each metabolite in which n13C atoms are incorporated
is calculated in mass fragments (Wittmann and Heinzle, 1999; vanWinden
et al., 2002; Huege et al., 2007) from GC-MS analysis and in whole
molecules from LC-MS/MS analysis by the following equation:

mn ð%Þ ¼ Mn

∑i
j¼0Mj

3100;

where Mn represents the isotopomer abundance for each metabolite. The 13C
enrichment of the metabolite possessing i C atoms is calculated as follows:

13C enrichment ð%Þ ¼ ∑
i

n¼1

i 3 mn

i
:

Removal of G1P by Enzymatic Reactions

All reactions (final reaction volume 165 µL) contained 150 mL of plant
extract (corresponding to 10 mg FWmaterial), 20 mMHEPES-KOH, pH 8,
and 5 mM MgCl2. To remove G1P from the extracts, either 0.4 units of
phosphoglucomutase, 0.7 units of glucose 6-phosphate dehydrogenase
and 0.75 mM NADP, or 0.5 units of UGPase, 0.2 units of PPase, and
0.75mMUTPwere added to the reactionmixtures. Control reactions were
performed as described above, but enzymes were omitted. Mixtures were
incubated at 30°C for 1.5 h, heated at 100°C for 2 min, and precipitated
proteins removed by centrifugation (14,000 rpm, 5 min). For LC-MS/MS
measurements, 10 mL of the mixtures was analyzed.

Nonaqueous Fractionation

For determination of subcellular metabolite levels, cellular compartments
were separated using density gradient centrifugation under nonaqueous
condition as described in Krueger et al. (2011). Metabolites were extracted
from dried fraction aliquots and quantified by GC-TOF-MS (Roessner
et al., 2001) and LC-MS/MS (Lunn et al., 2006; Arrivault et al., 2009).
Based on enzymatic markers, subcellular metabolite distributions were
computed using the BestFit command line tool (Krueger et al., 2011).

Extended KFP and Robustness Analysis

KFP allows for determining reaction fluxes based on a mass-action-like
differential equation model for the washout of the unlabeled fraction of
metabolic pools, whereby

dxu

dt
¼ ∑

r
Fin
X;r ∏

îISr
e

�
xui
xTi

�ai

2 ∑
r
Fout
X;r

xu

xT
;

where xu is the unlabeled content of metabolite X, Fin
X;r is the influx to metabolite

X from reaction r, and Fout
X;r denotes the out-flux from X. The model of central C

metabolism is comprised of 30 mass-action-like differential equations, shown
in Supplemental Methods 6 online. The net fluxes of each reaction can be
expressed as a positive linear combination of six independent modes, which
describe the way of a fixated C atom to an out-flux of the system. Since each
of these out-fluxes is normalized to one C atom per second, the coefficients of
the positive linear combination are the parameters to be estimated. Unlike the
original KFP approach whereby local fits are conducted for each reaction in the
model, we provide a global fit of the model to the experimental data. We use
the time-resolved washout of the unlabeled fraction for all pools as well as
nonaqueous fractionation data for the compartmentalized pools (see Sup-
plemental Data Set 1 and Supplemental Tables 3 and 7 online). Double-
exponential function is fitted to the washout kinetics of RuBP for the purpose of
estimating individual fluxes (see Supplemental Table 3 online), while an ex-
ponential function with an offset is fitted to the washout kinetics of glycerate
(see Supplemental Table 7 online) to estimate the unlabeled influx to explain the
incomplete labeling of CBC intermediates. In the case of RuBP, the input
function is corrected for the possibility of spawning unlabeled molecules (see
Supplemental Methods 6 online). For compartmentalized pools, the weighted
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sum according to the nonaqueous fractionation data is fitted. Simulated an-
nealing approach, followed by quasi-Newton optimization, are used to esti-
mate the model parameters with variance-weighted mean squared error
function (see Supplemental Methods 4 online). The correspondence between
the reactions and fluxes is given in Supplemental Table 8 online. For each fit, 30
repetitions are performed and the best result is reported. The estimated net flux
of a reaction is given in nmol

gFW$s of C atoms entering or leaving a particular pool
participating in the reaction, except for carboxylation and oxygenation, for
which the unit is nmol

gFW$s RuBP. The active pool for each metabolite is given by the
fraction of the pool that labeled 60 min into the experiment, termed active pool
assumption. For compartmentalized pools, the weighted sum according to the
nonaqueous fractionation data is fitted only to the active pool. Confidence
intervals for the flux estimates are obtained from Monte Carlo sampling (see
Supplemental Methods 5 online).
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Supplemental Figures

Supplemental Figure 1: Schematic visualization of the chamber used for Arabidopsis rosette
labeling. The transparent labeling chamber was continuously washed by stream of air (5 L sec-1)
prepared from cylinders, containing pure N2, O2 and 13CO2 after mixture in a gas mixer, to a final
concentration of 78% N2, 21% O2 and 400 ppm of 13CO2. After passing through an humidifier, gas was
supplied to the inside of the chamber by three transparent PVC pipes placed on the top rear of the box
in the way the gas stream is directed to the plant rosette. In the labeling chamber, plants were subjected
to a photon flux density of 115 µmol m-2 min-1 and quenched 5 s, 10 s, 1 min, 3 min, 10 min, 20 min or
60 min after start of labeling. A large volume of liquid nitrogen was poured over the rosette through a
funnel that was placed through a small outlet in the side of the box and held just above and slightly to
the side of the plant.
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Supplemental Figure 2: Exemplary mass distribution of 3PGA. Mass distribution at 5 s (A),
3 min (B), and 60 min (C) after start of 13C labeling using 13CO2. The isotopomer with mass to
charge ratio (m/z) 185 corresponds to the non-labeled form of 3PGA (3-phosphoglyceric acid), an analyte
containing three carbons. The mass is increasing by an amount equal to the number of stable isotopes
incorporated. Each isotopomer is presented as a ratio of its abundance to the sum of abundance of all
isotopomers.
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Supplemental Figure 3: 13CO2 labeling kinetics of metabolites from Calvin-Benson cycle,
starch, sucrose and trehalose bio-synthesis pathways. (A) Data as in Figure 2A of the main text,
but a split x-axis is used to allow clearer visualization of early time points. (B) Correlation plot between
13CO2 enrichment of Calvin-Benson cycle intermediates and that of 3PGA. Values (%) are average of
three biological replicates, ± SD. For clarity SD are not shown in panel B.
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Supplemental Data. Szecowka et al. (2013). Plant Cell 10.1105/tpc.112.106989.

A B

C D

Supplemental Figure 4: Removal of G1P by enzymatic reactions. Hexose phosphate chro-
matograms from extracts of Arabidopsis labeled 20 min. (A-B) Extracts from 2 different plants, un-
treated with enzymes. The compounds shown, by increasing order of retention time, are G6P, an unknown
hexose phosphate, F6P and G1P (marked in gray). (C) Extract shown in (A) pre-incubated with phos-
phoglucomutase; (D) Extract shown in (B) pre-incubated with UGPase. Each of these enzyme reactions
having G1P as substrate was coupled with a second enzymatic reaction to avoid an equilibrium of G1P
(G6PDH and PPase for phosphoglucomutase and UGPase, respectively), leading in (B) to complete
removal of G6P. In (B-C), the signal attributed to G1P was not present.
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Supplemental Figure 5: Time course of mass distribution of maltose and sucrose. (A) Su-
crose. (B) Maltose. The relative abundance of each isotopomer (mn) for a given metabolite is represented.
n corresponds to the number of 13C atoms incorporated in the metabolite. Values (%) are average of
three biological replicates, ± SD.
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Supplemental Figure 6: Time course of mass distribution of sugars, amino acids and organic
acids. (A) Time-course distribution. The relative abundance of each isotopomer (mn) for a given
metabolite is represented. n corresponds to the number of 13C atoms incorporated in the metabolite.
(B) Correlation plot between 13C enrichment of sugars, amino acids, organic acids and that of 3PGA.
Values (%) are average of three biological replicates, ± SD. For clarity SD are not shown in panel B.

7



Supplemental Data. Szecowka et al. (2013). Plant Cell 10.1105/tpc.112.106989.

A

CBC Glyc

Fgross
fully labeled

Fu
unlabeled

Fu

Fα

Fα

Fnet Fphoto.

Fgross = Fnet+Fphoto.

Fα = 3Fphoto.

xT dx

dt
= Fu+Fαα(t)−(Fnet+Fphoto.+Fα+Fu)x

0 1000 2000 3000

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1
2
C

fr
ac

tio
n

of
gl

yc
er

at
eC

B

0 500 1000 1500 2000 2500 3000 3500

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1
2
C

fr
ac

tio
n

of
C

B
C

0 500 1000 1500 2000 2500 3000 3500

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1
2
C

fr
ac

tio
n

of
C

B
C

data of CBC intermediates with error bars indicating SD

fit of model without unlabeled influx
part coming from glycerate in model without unlabeled influx

fit of model with unlabeled influx

part coming from glycerate in model with unlabeled influx

simulation of model with flux estimated in main model (All)

simulation of model with flux estimated in main model (Active)

D E

F

net flux All Active without Fu with Fu

( nmol

gFWs
C atoms) opt lower upper opt lower upper opt lower upper opt lower upper

Fgross 10.70 10.04 10.98 12.95 11.94 13.27 8.10 7.10 9.08 8.09 6.88 9.09
Fnet 8.83 8.05 9.11 10.35 9.40 10.67 6.75 5.84 7.51 6.75 5.84 7.73
Fphoto. 1.86 1.67 2.10 2.60 2.28 2.83 1.35 1.09 1.63 1.34 0.71 1.62
Fu - - - - - - - - - 0.0017 0.0 0.54

Supplemental Figure 7: Simplified model for estimating unlabeled in-flux. (A) Schematic representa-
tion of the simplified model. CBC denotes the pool whose labeling behavior corresponds to behavior of RuBP. The
model includes five fluxes: the gross fixation in-flux, Fgross, net fixation out-flux, Fnet, photorespiration out-flux,
Fphoto., the in-flux from glycerate, Fα, and the unlabeled in-flux, Fu, which is to be estimated. (B) Differential
equation whose solution gives the dynamics of the wash-out of the CBC pool. (C) The data for the wash-out
of glycerate is used for fitting α(t) = Ce

−ct + (1 − C), which is an exponential function with offset. Panels (D)
and (E) depict the model fits with and without unlabeled in-flux, shown in blue and red bold lines, respectively.
For comparison, the fit with flux estimates from the main model for the cases with and without the active pool
assumption are also included. (F) Tabular representation of the numerical results depicted in panels (D) and (E).
The flux estimates are denoted by the optimal value obtained from the fit ’opt’ and the ’lower’ and ’upper’ 95%
confidence limites obtained from the Monte Carlo simulation. The parameter and pool sizes used for estimating
fluxes are shown in Supplemental Table 7.
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Supplemental Figure 8: Variation of pool size. The effect of varying the pool size of a metabolite
on the estimates of individual net fluxes is visualized with the help of heatmaps. The figure refers to
the ’Active‘ scenario. Each column corresponds to a change in the pool size of a particular metabolites.
Variations in the pool size of 3PGA, ADPG, UDPG, serine, and glycine to 50, 75, and 125% of the nominal
value, shown in Supplemental Table 3, are considered. Effect is quantified by log2 of the relative change
in flux: δF = F

F ref. . The reference flux F ref. is shown in Supplemental Table 5 (’Active’, opt.).
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Supplemental Figure 9: Variation in compartmentalization data for G6P. The effect of varying
the compartmentalization data for G6P on the estimates of individual net fluxes is visualized with the
help of heatmaps. The figure refers to the ’Active’ scenario. Each column corresponds to a unique
variation in the compartmentalization of G6P. Variations in the distribution data of G6P to 40, 60, and
80% of the nominal value in plastid (17%), shown in Supplemental Table 3, are considered. Effect
is quantified by log2 of the relative change in flux: δF = F

F ref. . The reference flux F ref. is shown in
Supplemental Table 5 (’Active’, opt.).
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Supplemental Tables

Compounds nmol
g F W

5s/10s 10s/60s 60s/180s 180s/600s 600s/1200s 1200s/3600s

2PGA n.d. n.d. n.d. n.d. n.d. n.d. n.d.
3PGA n.d. n.d. n.d. n.d. n.d. n.d. n.d.
ADPG 0.71 ± 0.29 0.271 0.034 0.275 0.194 0.431 0.278
DHAP 15.9±5.5 0.947 0.950 0.119 0.738 0.137 0.751
F6P 129±26 0.705 0.640 0.091 0.493 0.141 0.370
FBP 21.2±9.6 0.622 0.347 0.144 0.816 0.153 0.542
G1P 18.9±6.1 0.931 0.538 0.212 0.440 0.578 0.630
G6P 213±50 0.783 0.650 0.104 0.552 0.205 0.393
RuBP 84.6±23.4 0.283 0.139 0.195 0.720 0.057 0.884
S7P 65.3±13.0 0.405 0.907 0.918 0.843 0.131 0.342
SBP 16.3±4.9 0.975 0.995 0.368 0.522 0.234 0.623
UDPG 92.6±19.5 0.129 0.748 0.071 0.794 0.393 0.265
Tre6P 0.16±0.03 0.609 0.712 n.d. n.d. 0.515 0.466
Suc6P 0.82±0.36 0.555 0.488 n.d. n.d. 0.004 0.009
Glycine 532±205 0.460 0.052 0.885 0.786 0.272 0.358
Glycerate 17.3±4.5 0.066 0.394 0.159 0.259 0.311 0.799
Serine 1000±195 0.863 0.624 0.921 0.926 0.305 0.326
myo-inositol 153±19 0.478 0.401 0.473 0.465 0.424 0.424
Sucrose 1114±117 0.411 0.215 0.341 0.709 0.424 0.422
Trehalose 2.86±0.86 0.135 0.402 0.043 0.004 0.420 0.420
Glutamate 1278±230 0.394 0.784 0.007 0.581 0.180 0.565
Malate 761±270 0.428 0.674 0.480 0.622 0.379 0.921
2-oxoglutarate 47.9±19.7 0.742 0.934 0.273 0.520 0.419 0.758
Alanine 325±85 0.213 0.200 0.613 0.472 0.525 0.692
Pyruvate 24.1±5.2 0.293 0.461 0.721 0.601 0.430 0.334
Valine 51.9±8.1 0.985 0.569 0.287 0.095 0.435 0.392
Isoleucine 12.5±2.4 0.858 0.753 0.582 0.238 0.429 0.429
Proline 131±63 0.634 0.790 0.073 0.689 0.378 0.597
Threonine 180±39 0.541 0.395 0.821 0.499 0.503 0.193
Fumarate 108±54 0.179 0.605 0.962 0.800 0.422 0.432
Aspartate 35.1±5.0 0.430 0.373 0.670 0.596 0.423 0.505
Phenylalanine 18.3±5.6 0.984 0.671 0.662 0.604 0.427 0.419
Asparagine 114±31 0.822 0.498 0.514 0.296 0.429 0.420
Fructose 1058±237 0.933 0.062 0.574 0.604 0.422 0.421
Glucose 1859±88 0.133 0.136 0.339 0.869 0.422 0.422
Tyrosine 1.98±0.47 0.531 0.819 0.638 0.369 0.429 0.425
Succinate 27.6±15.4 0.659 0.675 0.372 0.461 0.983 0.947
Lysine 15.0±2.4 0.957 0.686 0.205 0.302 0.429 0.427
Maltose 13.9±16.4 0.385 0.876 0.209 0.022 0.417 0.418

Supplemental Table 1: Metabolic content of 13CO2 labeled Arabidopsis rosettes. For a given
compound, amounts of all isotopomers were summed. Values are average of 21 biological replicates, ± SD,
with the exception of Tre6P and Suc6P for which are average of 19 biological replicates. Student´s t-Tests
(two tailed; heteroscedastic) were performed on metabolite levels at subsequent labeling durations (e.g.,
5 s versus 10 s). Significant differences are indicated in bold (p-value < 0.05). As indicated in Materials
and Methods, quantification was not performed for 3PGA and 2PGA. n.d. stands for not determined.
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Supplemental Data. Szecowka et al. (2013). Plant Cell 10.1105/tpc.112.106989.

Compounds 5 s 10 s 60 s 180 s 600 s 1200 s 3600 s

2PGA 5.9±0.7 7.6±1.9 27.1±2.2 55.1±6.6 72.4±4.5 77.3±3.2 82.4±1.2

3PGA 5.6±0.6 6.4±2.2 24.5±1.3 54.2±7.1 69.9±6.0 76.1±5.9 84.3±3.0

ADPG 2.0±2.3 4.5±4.4 11.3±2.2 53.5±6.6 73.6±5.7 74.8±8.3 91.6±2.3

DHAP 6.1±0.6 7.7±0.5 27.9±1.7 54.7±5.0 69.5±5.3 75.8±3.3 84.5±0.1

F6P 2.6±1.1 3.7±1.6 15.9±2.6 37.7±9.9 55.9±10.7 62.5±6.6 75.8±4.2

FBP 4.5±0.2 5.7±1.1 15.0±2.1 40.3±1.1 54.8±3.8 66.0±4.0 74.9±2.7

G1P 0.4±0.1 0.5±0.1 2.6±0.4 14.6±5.0 26.1±5.7 30.8±3.4 37.7±4.2

G6P 0.5±0.2 0.7±0.3 4.9±1.2 23.6±6.9 46.5±8.1 52.4±5.8 65.0±1.5

RuBP 3.2±0.7 4.9±1.8 26.3±3.7 53.1±7.0 72.3±5.9 79.9±3.7 88.2±1.7

S7P 3.3±0.9 5.1±0.9 28.1±9.0 63.2±6.0 79.7±6.4 83.8±4.2 92.4±3.7

SBP 4.8±0.2 6.6±1.0 25.1±3.6 52.9±4.8 64.9±8.0 71.7±4.7 74.5±6.0

UDPG 0.2±0.2 0.3±0.2 2.0±0.4 11.6±0.9 33.0±2.5 40.4±5.6 54.5±4.2

Tre6P 0.6±0.5 1.9±1.8 1.0±1.7 2.9 1.7±1.1 12.5±3.8 20.8±8.1

Suc6P 0.7±0.4 1.3±0.2 9.3±1.2 9.8 54.9±7.6 55.4±5.2 71.3±2.1

Glycine 0.3±0.4 0.6±0.5 1.4±0.1 8.3±3.3 17.7±7.3 17.9±1.6 27.0±2.6

Glycerate 2.5±0.1 2.7±0.9 2.8±0.2 6.9±0.6 17.7±7.1 40.0±0.6 65.1±4

Serine 0.2±0.1 0.1±0.1 0.4±0.2 5.2±2.0 23.2±0.6 46.9±5.2 61.0±1.3

myo-inositol 0.7±0.1 0.4±0.3 0.7±0.4 0.6±0.3 0.4±0.0 0.8±0.0 2.9±0.1

Sucrose 0.2±0.1 0.2±0.1 0.2±0.1 1.1±0.3 8.9±1.0 22±1.0 44.6±0.7

Trehalose 0.0±0.0 0.1±0.2 0.0±0.0 1.2±1.3 9.0±2.2 18.1±3.1 14.2±1.6

Glutamate 0.1±0.0 0.1±0.1 0.1±0.0 0.1±0.0 0.4±0.1 1.4±28.1 2.9±0.6

Malate 0.1±0.0 0.1±0.1 0.5±0.3 1.3±0.2 3.3±0.8 8.3±1.0 19.2±1.8

2-oxoglutarate 0.0±0.1 0.1±0.1 0.1±0.1 0.2±0.2 0.1±0.1 0.9±0.5 1.8±1.0

Alanine 0.0±0.1 0.2±0.2 0.0±0.0 3.1±0.3 16.3±4.3 35.9±1.7 46.1±3.9

Pyruvate 0.2±0.1 0.7±0.1 2.8±0.5 13.1±0.6 21.4±2.2 33.8±1.6 42.7±1.7

Valine 2.1±0.5 2.1±0.2 1.7±0.3 2.0±0.1 6.1±1.3 10.5±4.8 20.3±1

Isoleucine 0.2±0.2 0.2±0.2 0.3±0.1 0.6±0.1 2.2±0.8 6.2±1.1 8.6±1.1

Proline 0.0±0.0 1.3±1.2 0.0±0.0 0.6±1.0 0.0±0.0 0.1±0.2 2.0±0.3

Threonine 1.1±0.5 0.7±0.6 0.2±0.3 0.8±0.7 0.5±0.2 1.1±0.3 9.6±0.5

Fumarate 0.1±0.0 0.1±0.1 0.0±0.1 0.1±0.1 0.3±0.4 2.4±1.2 8.6±0.9

Aspartate 0.1±0.1 0.0±0.0 0.4±0.2 1.7±0.3 5.2±1.3 15±3.1 34.3±2.8

Phenylalanine 0.1±0.2 0.1±0.2 0.1±0.1 2.0±0.7 13.0±4.0 29.6±10.5 45.7±1.9

Asparagine 0.9±0.2 0.5±0.5 1.0±0.7 0.8±0.6 0.7±0.5 1.5±22.5 3.4±0.8

Fructose 0.6±0.2 0.6±0.2 0.6±0.1 0.7±0.2 0.7±0.1 1.5±0.2 12.8±2.1

Glucose 0.8±0.1 0.8±0.1 0.8±0.0 0.5±0.5 1.0±0.1 1.6±0.0 6.9±0.7

Tyrosine 0.6±0.5 0.8±1.5 0.3±0.4 1.4±0.9 8.7±1.6 17.0±6.1 17.7±2.5

Succinate 0.1±0.0 0.1±0.1 0.1±0.1 0.1±0.0 0.1±0.0 0.5±0.3 1.5±1.2

Lysine 0.4±0.7 0.3±0.3 0.5±0.5 0.6±0.5 1.6±1.3 6.2±1.1 10.2±1.4

Maltose 0.9±0.4 1.4±0.6 1.3±0.3 5.1±0.4 43.6±13 36.8±6.2 46.7±0.9

Methionine 0.1±0.1 0.1±0.2 0.1±0.1 0.2±0.1 3.0±0.4 8.7±2 16.2±1.1

Supplemental Table 2: 13CO2 enrichment (%) of metabolites. Duration of labeling is indicated
in seconds. Values are average of three biological replicates, ± SD, except at time point 180s for Tre6P
and Suc6P.
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Input model

h
input
3PGA,oxy.(t) = Ae−at + Be−bt, with A+B=1 A=0.7690, B=0.2310, a=0.0200s−1, b=0.0014s−1

h
input
gly,oxy.(t) = Ae−at + Be−bt, with A+B=1 A=0.7615, B=0.2385, a=0.0133s−1, b=0.0008s−1

Pool size data

All Active

metabolite measured pool size η pool size xT ηact. ηinact. xT
act. xT

inact.

(nmol
gFW

) (%) (nmol
gFW

C atoms) (%) (%) (nmol
gFW

C atoms) (nmol
gFW

C atoms)

3PGA‡ 200.10 - 600.30 93 7 558.28 42.02

DHAP‡ 15.88 - 47.64 93 7 44.30 3.33

ADPG 0.55 - 3.3 99 1 3.27 0.03

UDPG 35.75 - 214.50 68 32 145.86 68.64

Suc6P 0.82 - 9.84 88 12 8.66 1.18

Tre6P∗ 0.16 - 1.92 100 0 1.92 -

myo-Inositol∗ 921.58 - 5529.48 100 0 5529.48 -

Glycine 543.15 - 1086.30 30 70 325.89 760.41

Serine 4264.63 - 12793.89 67 33 8571.91 4221.98

Glycerate 168.82 - 506.46 73 27 369.72 136.74

2PGA 20.01 - 60.03 91 9 54.63 5.40

ηpl. ηcyt. xT
pl. xT

cyt. ηpl. ηcyt. ηinact. xT
act.pl. xT

act.cyt. xT
inact.

FBP† 8.93 70 30 37.51 16.07 58 25 18 31.08 13.40 9.64

F6P† 86.36 34 66 176.17 341.99 30 58 12 155.45 300.53 62.18

G6P† 172.91 17 83 176.37 861.09 14 67 19 145.24 695.10 197.12

G1P† 11.68 8 92 5.61 64.47 4 42 54 2.80 29.43 37.84

Supplemental Table 3: Parameter and data used for flux estimates. The estimates for the four parameters of the double-exponential function,
used as input models, are included. The data for the measured pool sizes and their compartmentalization into metabolic pools for the cases with and
without the active pool assumption are given in the columns titled ’Active’ and ’All’, respectively. Metabolites marked by † occur in plastid and cytosol.
Metabolic pools of 3PGA and DHAP, marked by ‡, occur in plastid and cytosol, but are assumed to be in rapid equilibrium. For metabolites marked by
*, an inactive pool was not assumed.
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Compounds Ion mass Full-labeled ion Backbone Ion sum formula

(m/z) mass (m/z) C atoms

Phenylalanine 2TMS 218 220 2 C8H20N1Si2

Asparagine 3TMS 231 234 3 C9H23O1N2Si2

Lysine 3TMS 156 161 5 C7H14O1N1Si1

Serine 3TMS 218 220 2 C11H28O3N1Si3

Threonine 3TMS 320 324 4 C12H30O3N1Si3

Isoleucine 2TMS 158 163 5 C8H20N1Si1

Alanine 3TMS 188 190 2 C8H22N1Si2

Proline 2TMS 216 220 4 C9H22O1N1Si2

Valine 2TMS 218 220 2 C8H20O2N1Si2

Glycine 3TMS 276 278 2 C10H26O2N1Si3

Aspartate 3TMS 232 235 3 C9H22O2N1Si2

Tyrosine 3TMS 218 220 2 C8H20O2N1Si2

Glutamate 3TMS 246 250 4 C10H24O2N1Si2

Malate 3TMS 233 236 3 C9H21O3Si2

Fumarate 2TMS 245 249 4 C9H17O4Si2

Glycerate 3TMS 189 191 2 C7H17O2Si2

Glucose 5TMS 319 323 4 C13H31O3Si3

Sucrose 8TMS 103 104 1 C4H11O1Si1

Trehalose 8TMS 103 104 1 C4H11O1Si1

Maltose 8TMS 361 367 6 C15H33O4Si3

myo-Inositol 6TMS 103 104 1 C4H11O1Si1

Pyruvate 1TMS 174 177 3 C6H12O3N1Si1

Fructose 5TMS 307 310 3 C12H31O3Si3

Methionine 2TMS 176 180 4 C7H18N1S1Si1

Supplemental Table 4: Gas chromatography–electron impact (GC-EI) fragmentation pat-
terns. TMS: trimethylsilylation. Backbone C atoms stand for the number of carbon atoms from the
analyte backbone that can be labeled.
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reaction net flux [ nmol
gF W s

C atoms]

All Active

opt lower upper opt lower upper

5
RuBP +

1
CO2

6
−→ 2

3
3PGA F(0,CO2),(1) 64.18 60.26 65.90 77.68 71.66 79.65

F out
RuBP 53.49 50.22 54.92 64.74 59.71 66.37

F out
CO2

10.70 10.04 10.98 12.95 11.94 13.27
5

RuBP +
0
O2

5
−→

3
3PGA +

2
Gly F(0,O2),(1,16) 18.62 16.73 21.02 25.99 22.83 28.34

F in
3PGA 11.17 10.04 12.61 15.60 13.70 17.00

F in
Gly 7.45 6.69 8.41 10.40 9.13 11.34

3
3PGA

3
⇄

3
DHAP F1,2 80.94 76.51 84.23 101.08 93.62 104.57

2
3

DHAP
6
⇄

6
FBPpl. F2,3 35.17 32.99 36.64 39.48 36.25 40.66

6
FBPpl.

6
−→

6
F6Ppl. F3,4 35.17 32.99 36.64 39.48 36.25 40.66

6
F6Ppl.

6
⇄

6
G6Ppl. F4,5 6.32 5.58 6.62 3.19 2.23 3.26

6
G6Ppl.

6
⇄

6
G1Ppl. F5,6 6.32 5.58 6.62 3.19 2.23 3.26

6
G1Ppl.

6
⇄

6
ADPG F6,7 6.32 5.58 6.62 3.19 2.23 3.26

6
ADPG

6
−→ O F7,O 6.32 5.58 6.62 3.19 2.23 3.26

2
3

DHAP
6
⇄

6
FBPcyt. F2,8 2.51 2.31 2.63 7.16 6.75 7.78

6
FBPcyt.

6
⇄

6
F6Pcyt. F8,9 2.51 2.31 2.63 7.16 6.75 7.78

6
F6Pcyt.

6
⇄

6
G6Pcyt. F9,10 1.28 1.18 1.34 3.60 3.40 3.92

6
G6Pcyt.

6
⇄

6
G1Pcyt. F10,11 1.23 1.12 1.29 3.56 3.35 3.87

6
G1Pcyt.

6
⇄

6
UDPG F11,12 1.23 1.12 1.29 3.56 3.35 3.87

6
F6Pcyt. +

6
UDPG

12
−−→

12
Suc6P F(9,12),13 2.45 2.25 2.57 7.11 6.7 7.73

F out
F6Pcyt.

1.23 1.12 1.29 3.55 3.35 3.87

F out
UDPG 1.23 1.12 1.29 3.55 3.35 3.87

12
Suc6P

12
−−→ O F13,O 2.45 2.25 2.57 7.11 6.70 7.73

6
G1Pcyt.

6
−→

6
Myo F10,14 0.057 0.056 0.061 0.050 0.049 0.051

6
Myo

6
−→ O F14,O 0.057 0.056 0.061 0.050 0.049 0.051

6
G6Pcyt. +

6
UDPG

12
−−→

12
Tre6P F(10,12),15 0.00053 0.00055 0.00064 0.00050 0.00049 0.00052

F out
G6P 0.00026 0.00028 0.00032 0.00025 0.00024 0.00026

F out
UDPG 0.00026 0.00028 0.00032 0.00025 0.00024 0.00026

12
Tre6P

12
−−→ O F15,O 0.00053 0.00055 0.00064 0.00050 0.00049 0.00052

2
2

Gly
4
−→

3
Ser +

1
CO2 F16,(17,CO2) 7.45 6.69 8.41 10.4 9.13 11.34

F in
CO2

1.86 1.67 2.10 2.60 2.28 2.83

F in
Ser 5.59 5.02 6.30 7.80 6.85 8.50

3
Ser

3
⇄

3
Glyc F17,18 5.59 5.02 6.30 7.80 6.85 8.50

3
Glyc

3
−→

3
3PGA F18,1 5.59 5.02 6.30 7.80 6.85 8.50

3
3PGA

3
⇄

3
2PGA F1,19 0 - - 0 - -

3
2PGA

3
−→ O F19,O 0 - - 0 - -

Supplemental Table 5: Reactions, flux notation, and net flux estimates. Reactions of the
model and notation of corresponding flux in carbon atoms participating in each reaction are included.
The number above a metabolite indicates the number of carbon atoms in the metabolite. The number
above an arrow indicates the number of carbon atoms participating in the reaction. An out-flux of the
system it denoted by O used as an index. Note that multi-molecular fluxes are additionally specified as
in-flux or out-flux of the corresponding pool. The values of the individual fluxes with and without the
active pool assumption are given in the columns titled ’Active’ and ’All’ respectively. The flux estimates
are denoted by the optimal value obtained from the fit ’opt’ and the ’lower’ and ’upper’ 95% confidence
limites obtained from the Monte Carlo simulation. The indicies correspond to those appearing below the
metabolite names in Supplemental Figure M2 in Supplemental Methods 6. The parameter for the
input models and the poolsizes are show in Supplemental Table 3. The time courses of the unlabeled
fraction are a part of Supplemental Dataset 1.
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reaction exchange flux [ nmol
gF W s

C atoms]

All Active

opt lower upper opt lower upper

3
3PGA

3
⇄

3
DHAP F ex

1,2 inf. 132.23 inf. 1.62 0.72 17.48
6

G6Ppl.

6
⇄

6
G1Ppl. F ex

5,6 inf. 200.14 inf. 0.02 0.01 4.69
6

F6Pcyt.

6
⇄

6
G6Pcyt. F ex

9,10 inf. 21.71 inf. 0.51 0.33 4.04
6

G6Pcyt.

6
⇄

6
G1Pcyt. F ex

10,11 inf. 200.14 inf. inf. 31.08 inf.
6

G1Pcyt.

6
⇄

6
UDPG F ex

11,12 85.56 248.26 inf. 7.90 5.74 inf.
3

Ser
3
⇄

3
Glyc F ex

17,18 61.29 152.49 inf. 2.12 1.21 inf.
3

3PGA
3
⇄

3
2PGA F ex

1,19 inf. 28.57 inf. inf. 23.68 inf.

Supplemental Table 6: Reactions, flux notation, and exchange flux estimates. Reactions of the
model and notation of corresponding flux in carbon atoms participating in each reaction are included. The
number above a metabolite indicates the number of carbon atoms in the metabolite. The number above an
arrow indicates the number of carbon atoms participating in the reaction. The values of the individual
fluxes with and without the active pool assumption are given in the columns titled ’Active’ and ’All’
respectively. The flux estimates are denoted by the optimal value obtained from the fit ’opt’ and the ’lower’
and ’upper’ 95% confidence limites obtained from the Monte Carlo simulation. The indicies correspond
to those appearing below the metabolite names in Supplemental Figure M2 in Supplemental Methods
6. The parameter for the input models and the poolsizes are show in Supplemental Table 3. The time
courses of the unlabeled fraction are a part of Supplemental Dataset 1. Unidentifiability of the upper
bound is indicated by ’inf.’, by corresponding to a set upper bound of 999.
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Input function for Glycerate

α(t) = Ce−ct + (1 − C) C=0.7147, c=6.808 10-4 s-1

Pool size data

intermediate carbon per total content ηpl. remark pool size

of CBC molecule (nmol
gFW

) (%) (nmol
gFW

C atoms)

RuBP 5 46.7 ± 8.2 100 assumpt. 233.35 ± 41.1

3PGA 3 200.1 ± 44.8 100 r.e. 600.3 ± 134.4

DHAP 3 15.9 ± 0.6 100 r.e. 47.7 ± 1.8

FBP 6 8.9 ± 2.3 70 n.a.f. 37.38 ± 9.66

F6P 6 86.4 ± 14.6 34 n.a.f. 176.3 ± 29.78

SBP 7 9.6 ± 3.0 75 n.a.f. 50.40 ± 15.75

S7P 7 28.0 ± 5.4 82 n.a.f. 160.72 ± 30.996

R5P 5 1.2 ± 0.2 49 n.a.f. 2.94 ± 0.49

RuBP+X5P 5 8.7 ± 2.6 100 n.a.f. 43.5 ± 13.00

2PGA 3 20.0 ± 4.5 100 r.e. 60.0 ± 13.5

sum 1412.59 ± 290.476

Supplemental Table 7: Parameter and data used for the simplified model. The part of the
denoted pool size of a metabolite effectively taking part in the Calvin-Benson cycle (CBC) is denoted by
ηpl.. These values are either taken from the non-aqueous-fractionation data (n.a.f.) or, due to the rapid
equilibrium assumption (r.e.), are set to 100% of the plastidic and cytosolic part of the metabolite (e.g.,
for 3PGA, DHAP, and 2PGA). RuBP is assumed to be exclusively in the plastid (assumpt.).
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Simplified model

net flux All Active Active 2 Active 3 without Fu with Fu

( nmol
gFWs

C atoms) opt lower upper opt lower upper opt lower upper opt lower upper opt lower upper opt lower upper

Starch synthesis 6.32 5.58 6.62 3.19 2.24 3.25 2.57 2.07 2.99 2.68 2.15 2.79 - - - - - -

Sucrose synthesis 2.45 2.25 2.57 7.11 6.69 7.73 8.34 7.34 8.39 6.59 6.38 7.46 - - - - - -

C atoms lost via photorespiration 1.86 1.67 2.10 2.60 2.28 2.83 2.21 2.01 2.37 2.14 2.03 2.39 1.35 1.09 1.63 1.34 0.71 1.62

myo-inositol synthesis 0.057 0.056 0.061 0.050 0.049 0.051 0.0486 0.0483 0.0508 0.051 0.049 0.043 - - - - - -

Trehalose synthesis ( pmol

gFWs
C atoms) 0.53 0.55 0.64 0.50 0.49 0.52 0.50 0.48 0.52 0.50 0.46 0.51 - - - - - -

Gross C fixation 10.70 10.04 10.98 12.95 11.94 13.27 13.17 12.01 13.28 11.46 11.09 12.27 8.10 7.10 9.08 8.09 6.88 9.09

Net C fixation 8.83 8.05 9.11 10.35 9.40 10.67 10.96 9.81 11.08 9.32 8.67 10.05 6.75 5.84 7.51 6.75 5.84 7.73

unlabeled back-flow - - - - - - - - - - - - 0.0017 0.0 0.54 - - -

RuBP carboxylation ( nmol
gFWs

) 10.70 10.04 10.98 12.95 11.94 13.27 13.17 12.01 13.28 11.46 11.09 12.27 8.10 7.10 9.08 8.09 6.88 9.09

RuBP oxygenation ( nmol
gFWs

) 3.72 3.35 4.20 5.20 4.57 5.66 4.41 4.02 4.75 4.28 4.07 4.78 2.70 2.18 3.26 2.68 1.42 3.24
RuBP oxygenation

RuBP carboxylation (%) 34.8 - - 40.1 - - 33.5 - - 37.3 - - 33.3 - - 33.1 - -

Supplemental Table 8: Comparison of flux estimates regarding different model assumptions. Seleceted fluxes of the model with regard to
different assumptions of inactive pools and fluxes of the simplified model. All: no inactive pools; Active: no inactive pools for Myo and Tre6P; Active 2:
no inactive pools for Myo, Tre6P, Ser, Glyc; Active 3: no inactive pools for Myo, Tre6P, Ser, Glyc, 3PGA, 2PGA and DHAP; without Fu: simplified
model without unlabeled backflow Fu; with Fu: simplified model with unlabeled backflow Fu. The flux estimates are denoted by the optimal value
obtained from the fit ’opt’ and the ’lower’ and ’upper’ 95% confidence limites obtained from the Monte Carlo simulation.
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Active Active

net flux (amino acid mode)

( nmol
gFWs

C atoms) opt lower upper opt lower upper

Starch synthesis 3.44 2.93 3.80 3.19 2.24 3.25

Sucrose synthesis 6.40 5.54 6.92 7.11 6.69 7.73

C atoms lost via photorespiration 2.53 2.12 2.76 2.60 2.28 2.83

myo-inositol synthesis 0.050 0.047 0.051 0.050 0.049 0.051

Trehalose synthesis ( pmol
gFWs

C atoms) 0.50 0.49 0.51 0.50 0.49 0.52

Amino acid synthesis 0.00043 0.0 0.35 - - -

Gross C fixation 12.41 10.96 13.28 12.95 11.94 13.27

Net C fixation 9.88 8.58 10.66 10.35 9.40 10.67

RuBP carboxylation ( nmol
gFWs

) 12.41 10.96 13.28 12.95 11.94 13.27

RuBP oxygenation ( nmol
gFWs

) 5.05 4.23 5.53 5.20 4.57 5.66
RuBP oxygenation

RuBP carboxylation (%) 40.7 - - 40.1 - -

Supplemental Table 9: Comparison of flux estimates regarding the influence of an ad-
ditional flux mode towards amino acid synthesis. The additional flux mode is shown in
Supplemental Figure M2 panel G and Supplemental Table M3. The optimal values of the flux
estimates are given in the column titled ’opt’, while ’lower’ and ’upper’ contain the 95% confidence
intervals obtained from the Monte Carlo simulation.
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Compounds Parent ion Masses Collision Preferred product Masses

([M-H]-) formula energy (eV) ion formula

Succinatea-0, -1, -2, -3, -4 C4H5O
-

4 117, 118, 119, 120, 121 10 –CO2 73, 73/74, 74/75,

75/76,76

Malate-0, -1, -2, -3, -4 C4H5O
-

5 133, 134, 135, 136, 137 10 –H2O 115, 116, 117, 118

119

2-oxoglutaratea-0, -1, -2, -3, -4, -5 C5H5O
-

5 145, 146, 147, 148, 149, 150 10 –CO2 101, 101/102,

102/103, 103/104,

104/105, 105

Glutamate-0, -1, -2, -3, -4, -5 C5H8NO -
4 146, 147, 148, 149, 150, 151 10 –H2O 128, 129, 130, 131,

132,133

DHAP-0, -1, -2, -3 C3H6O6P
- 169, 170, 171, 172 10 [H2PO4]

- 97

2PGA/3PGA-0, -1, -2, -3 C3H6O7P
- 185, 186,187, 188 26 [PO3]

- 79

G6P/F6P-0, -1, -2, -3, -4, -5, -6 C6H12O9P
- 259, 260, 261, 262, 263, 264, 265 22 [H2PO4]

- 97

G1P-0, -1, -2, -3, -4, -5, -6 C6H12O9P
- 259, 260, 261, 262, 263, 264, 265 31 [PO3]

- 79

S7P-0, -1, -2, -3, -4, -5, -6, -7 C7H14O10P
- 289, 290, 291, 292, 293, 294, 295, 296 20 [H2PO4]

- 97

RuBP-0, -1, -2, -3, -4, -5 C5H11O11P
-

2 309, 310, 311, 312, 313, 314 22 [H2PO4]
- 97

FBP-0, -1, -2, -3, -4, -5, -6 C6H13O12P
-

2 339, 340, 341, 342, 343, 344, 345 27 [H2PO4]
- 97

SBP-0, -1, -2, -3, -4, -5, -6, -7 C7H15O13P
-

2 369, 370, 371, 372, 373, 374, 375, 376 29 [H2PO4]
- 97

UTP-0; -9 C9H14N2O15P
-

3 483; 492 28 [HO6P2]- 159

ATP-0; -10 C10H15N5O13P
-

3 506.2; 516.2 21 C10H12N5O9P
-

2 408; 418

UDPG-0, -1, -2, -3, -4, -5, -6; -15 C15H23N2O17P
-

2 565, 566, 567, 568, 569, 570, 571; 580 28 C9H12N2O9P
- 323.1; 332.1

ADPG-0, -1, -2, -3, -4, -5, -6; -16 C16H24N5O15P
-

2 588, 589, 590, 591, 592, 593, 594; 604 28 C10H13N5O7P
- 346.1; 356.1

Tre6P/Suc6P-0, C12H22O14P
- 421 - 433 41 [PO3]

- 79

-1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12

Supplemental Table 10: Specific isotopomer-dependent MS parameters used in selected reaction monitoring (SRM). The number
associated to the compounds represents the number of 13C incorporated in the molecule. A compounds for which the labeling can be present or not in
the product ion, leading to alternative parameters for the isotopomers.
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Supplemental Methods 1. Compartmentalization and major pathways of car-

bon metabolism in a photo-synthetically active leaf

The Calvin-Benson cycle and starch synthesis occur in the chloroplast. Starch is synthesized from the
Calvin-Benson cycle intermediate F6P via phosphogloicoseisomerase, phoshoglucomutase and ADPglu-
cose pyrophosphorylase (AGPase), followed by a complex set of polymerization reactions. Sucrose syn-
thesis involves the export of triose-phosphates from the chloroplast via the triose-phosphate:phosphate
translocator (TPT) (Fliege et al., 1978), followed by their conversion to hexose phosphates by a cytosolic
FBPase and conversion of hexose phosphates and UDP-glucose (UDPG) to sucrose by the dedicated
and plant-specific enzymes sucrose phosphate synthase (SPS) and sucrose phosphatase (Stitt et al., 1980,
1989, 2010), which are exported. TPT also catalyze the exchange of triose-phosphate and 3PGA that
facilitates export of ATP and NADPH to the cytosol. The bio-synthetic pathways are regulated by
metabolic reactions involving sugar nucleotides, which are tightly regulated by metabolic reactions in-
volving ADP-glucose (ADPG) phyrophosphorylase, converting G1P into ADPG and regulating starch
bio-synthesis (Zeeman et al., 2007), and by the cytosolic FBPase and sucrose phosphate synthase, trans-
forming UDPG into sucrose-6-phosphate and regulating sucrose content (Stitt, 1987; Stitt et al., 2010).

The complexity of compartmentalization is even larger for the non-phosphorylated metabolites in-
volved in photorespiration and sugar, organic acid and amino acid metabolism. Photorespiration involves
reactions in the peroxisome, mitochondria and cytosol, before glycerate returns to the chloroplast (for
recent reviews, see (Stitt et al., 2010; Bauwe et al., 2010)). Organic acid and amino acid metabolism is
distributed between the cytosol, plastids and mitochondria. Furthermore, the vacuole, which occupies
most of the volume of a plant cell, contains substantial pools of sugars, organic acids and amino acids.
Consequently, information about the overall content of metabolites does not provide a reliable guide to
the levels of metabolites in the individual sub-cellular compartments and pathways.

Sub cellular fractionation studies show that Calvin-Benson cycle intermediates, such as: RuBP, SBP
and FBP, are largely confined to the plastid, as is ADPG which is a dedicated precursor for starch
synthesis. While triose-phosphates, 3PGA and hexose-phosphates are distributed between the plastid
and cytosol, UDPG (involved in sucrose metabolism), 2-phosphogylcerate and PEP are largely restricted
to the cytosol. Furthermore, a substantial part of the cellular complement of sucrose and amino acids and
almost the entire cellular complement of organic acids, like malate and fumarate and free reducing hexose
sugars (glucose and fructose), is located in the vacuole (Gerhardt and Heldt, 1984; Gerhardt et al., 1987).

Supplemental Methods 2. Labeling Strategies

Differential pool size turnover during photosynthesis

A considerable challenge is posed by the interplay between the interlocked pathways of carbon (C)
fixation, and by the very large range in the predicted turnover times of metabolites in these pathways.
An enormous range in the half-time of different processes is a hallmark of photosynthesis ranging from
6-13 ms (Cournac et al., 2002), for photo-chemical reactions, to 150 ms (Maxwell and Biggins, 1976), for
steps in electron transport, and 2-20 s for turnover of ATP and NADPH (Bieleski, 1973). Based on the
pathway stoichiometry and the measured size of the metabolite pools, the estimated turnover times of
many Calvin-Benson cycle metabolites during rapid photosynthesis are less than a second (Stitt et al.,
1980; Arrivault et al., 2009). Even though only one C is fixed per cycle turnover, the recurring passage
of metabolites, multiple times around the cycle, will result in rapid randomization of label implying
that it may be difficult to resolve detailed labeling patterns in the Calvin-Benson cycle. The turnover
rates of cytosolic metabolites involved in sucrose synthesis may be considerably slower (Stitt et al., 1980,
1983; Arrivault et al., 2009). The levels of metabolites like glycine and serine, which are involved in
photorespiration, are also high. Assuming that the entire pool participates in the photorespiratory
pathways, their turnover times may be of the order of 5 min or more (Cegelski and Schaefer, 2005). Slow
turnover of these pools is also indicated by the occurrence of a large so-called “post-illumination” burst of
CO2 release. This lasts several minutes, is only seen in conditions when photorespiration is occurring and
is thought to reflect the decarboxylation of large internal photorespiratory pools that have accumulated
in the light. We can therefore anticipate that while there will be rapid and coordinated incorporation of
13CO2 in all Calvin-Benson cycle intermediates, this will be modified by continuing in-fluxes of unlabeled
C from photorespiration until the pools in the latter pathway are fully labeled. It is of prime importance
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that these differential turnover rates are considered in the design and subsequent interpretation of labeling
strategies, since it may be required to discard different data points across the kinetics of labeling for a
given pathway depending on the turnover rates of the metabolite pools which it contains.

Brief review of methods for flux estimation from labeling data

Approaches to model individual reaction rates from 13C labeling data can be classified based on two
criteria: (i) the type of metabolic state from which the data is obtained and (ii) the biochemical knowledge
used in the mathematical formulation. With respect to the first criterion, experimental 13C labeling
approaches can be divided into metabolic non-steady-state and steady-state experiments (Wahl et al.,
2008). Data from non-stationary experiments can be employed to identify the properties of reaction
kinetics, while data from metabolic stationary approaches are usually used to quantify intracellular fluxes.
Several types of biochemical knowledge can be used to support flux estimation: (i) the stoichiometry of the
metabolic reactions, (ii) carbon fate (so-called atom) mappings, which describe the transition of carbon
atoms for each reaction in the system, (iii) optimization of an objective function (e.g., sum of squared
residuals weighted by the inverse of the experimental variances) can be used to further constrain which
theoretically feasible fluxes are consistent with the available data, and (iv) various kinetic parameters that
capture allosteric regulations (for details, see (Selivanov et al., 2006; Sauer, 2006; Wahl et al., 2008)).

The mathematical apparatus used to translate this biochemical knowledge into a metabolic model
ranges from simple mass-balance equations (Katz and Wood, 1960), isotopomer balance equations
(Wiechert et al., 1999), elementary metabolite units (EMUs) (Antoniewicz et al., 2006; Young et al.,
2008), employing decompositions of linear systems of equations formulated by using atom mapping matri-
ces, to systems of ordinary differential equations (Mason and Rothman, 2004) coupled with atom mapping
matrices (Schmidt et al., 1997). Atomic mappings are usually obtained from computational predictions
with additional set of assumptions (Ravikirthi et al., 2011).

However, these methods require knowledge about the fragment position in the molecule.
In addition, constraint-based models resulting from the combination of mass balances and flux ratios

with the objective of minimizing the sum of the weighted squared residuals have been employed to obtain
the distribution of reaction fluxes (Fischer et al., 2004). While these methods have proven valuable for
estimating the inter-cellular fluxes in some systems (see e.g. (Young et al., 2011)), to quantify the inter-
cellular net fluxes of a larger set of photosynthesis-related pathways in illuminated Arabidopsis thaliana

we chose to make use of another computational alternative, which can be readily implemented for flux
estimation.

Supplemental Methods 3. Extended Kinetic Flux Profiling

Kinetic Flux Profiling (KFP) (Yuan et al., 2006, 2008) is a method for determining reaction fluxes based
on the washout of the unlabeled fraction of a metabolic pool. The method is based on modeling the
delay in labeling of substrate and product pools of a mono-molecular reaction. The substrate pool is
assumed to show an exponential-decay-like behavior. Applied to each mono-molecular reaction in a
given network, the method allows estimation of fluxes as local properties of the network. We extend
the method to irreversible multi-molecular reactions to estimate the steady-state flux distribution of all
reactions as a global property, and call it extended KFP. A list of all mathematical definitions is shown
in Supplemental Table M1. Given a metabolite X , let xu denote its unlabeled content, and xT , its
total content in an observed (measured) metabolic steady state. The unlabeled fraction of X , denoted
by x̃, is then defined as:

x̃ =
xu

xT
. (1)

Assumptions

Kinetic Flux Profiling is based on three assumptions: (i) The metabolic system is at a metabolic steady
state, i.e., all concentrations of metabolites and fluxes are constant1; (ii) Enzymes do not discriminate

1Note that the metabolic steady state refers to the total number of molecules in a pool, whereas the isotopic steady state

deals with the distribution of different mass isotopomers.
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α(t) . . . . . . . . . . input function presenting unlabeled fraction of glycerate in simplified model
η, ηcyt., ηpl. . . . fraction of the total content in cytosol or plastid
x̂i . . . . . . . . . . . . isotopic peak with i labeled carbon atoms
νr . . . . . . . . . . . . rate of reaction r

νXi,r, νi,r . . . . stoichiometric coefficient of metabolite Xi and reaction r

φl . . . . . . . . . . . . amount of non cyclic mode ~M l

σi,j . . . . . . . . . . . mean absolute difference of flux Fi,j in leave-one-out validation
N . . . . . . . . . . . . stoichiometric matrix
θ(t) . . . . . . . . . . function generating unlabeled in-flux from labeled fraction
x̃, x̃cyt., x̃pl. . . . unlabeled fraction of X

x̃∗ . . . . . . . . . . . partially labeled pool
ϕi,j . . . . . . . . . . amount of exchange flux M ex

i,j

ςi,j . . . . . . . . . . . relative mean absolute difference of flux Fi,j in leave-one-out validation
~M l . . . . . . . . . . . elementary mode of steady state flux distribution
~v . . . . . . . . . . . . . rate vector
A, B, a, b, C, c . parameters of exponential fits in input functions
F ex . . . . . . . . . . exchange flux

F
in/out
X,r . . . . . . . in-flux or out-flux of X caused by reaction r

f
in/out
X,r . . . . . . . unlabeled in-flux or out-flux of X caused by reaction r

F
in/out
X . . . . . . . in-flux or out-flux of X

F net . . . . . . . . . net flux
F(a,b),(c,d) . . . . flux of a reaction with a and b as indicies of substrates and c and d of products
Fgross . . . . . . . . . gross carbon fixation (simplified model)
Fnet . . . . . . . . . . net carbon fixation (simplified model)
Fphoto . . . . . . . . flux of carbon atoms lost via photorespiration (simplified model)
Fu . . . . . . . . . . . . unlabeled in-flux to CBC (simplified model)
Fi,j . . . . . . . . . . flux from pool with i to pool with index j

FX . . . . . . . . . . overall flux through a pool X caused by all reactions
hin

X . . . . . . . . . . . effective unlabeled in-flux
k . . . . . . . . . . . . time constant
M l

i,j . . . . . . . . . flux of elementary mode of steady state flux distribution ~M l

nr . . . . . . . . . . . . number of carbon atoms participating in reaction r

nX . . . . . . . . . . . number of carbon atoms of interest of metabolite X

r . . . . . . . . . . . . . reaction
Sr

e . . . . . . . . . . . set of indicies of products of reaction r

X . . . . . . . . . . . . metabolite
xT , xT

cyt., x
T
pl. . . total amount of X or steady state pool size

xu . . . . . . . . . . . . unlabeled (mono-isotopic) amount of X

act. . . . . . . . . . active
cyt. . . . . . . . . . cytosol
inact. . . . . . . . . inactive
pl. . . . . . . . . . . plastic
ref . . . . . . . . . . . reference
C . . . . . . . . . . . . . carbon
CBC . . . . . . . . . . Calvin-Benson cycle
CTM . . . . . . . . . Carbon transition maps
eKFP . . . . . . . . . extended Kinetic flux profiling
KFP . . . . . . . . . . Kinetic flux profiling
m/z . . . . . . . . . . ratio mass/charge
SD . . . . . . . . . . . standard deviation
t . . . . . . . . . . . . . . time

Supplemental Table M1: List of mathematical definitions
23



Supplemental Data. Szecowka et al. (2013). Plant Cell 10.1105/tpc.112.106989.

between molecules of different labeling state, i.e., enzymes are insensitive to the incorporated heavy
isotopes; and finally, (iii) The metabolic pools are considered well-mixed. Therefore, an enzyme does not
distinguish between molecules belonging to the same metabolic pool. Moreover, implicitly, all molecules of
the same pool have equal probability to react, and all effects of spatial distributions and those of enzymatic
mechanism are assumed negligible. Following these assumptions a model of differential equations can be
derived to describe the time-dependent behavior of the washout via mass-action-like kinetics.

General remarks regarding fluxes and rates

A chemical reaction r describes a process of transformation of substrate molecules to product molecules.
The corresponding rate vr of the reaction affects the quantities of the involved molecules constrained by
the stoichiometric coefficients. From the perspective of metabolic pools, the rate acts as an out-flux at
the pool of a substrate and as an in-flux at a product side. Given a reaction r:

νX,rX +
∑

i

νXi,rXi −→ νY,rY +
∑

j

νYj ,rYj , (2)

let F out
X,r denote the out-flux from the pool of substrate X through r, F in

Y,r, the in-flux to the pool of
product Y , and νX,r the corresponding stoichiometric coefficient. In- and out-fluxes are coupled by their
stoichiometry:

F out
X,r = νX,rvr (3)

F in
Y,r = νY,rvr. (4)

The overall in-flux F in
X to the pool of metabolite X is the sum over in-fluxes F in

X,r of the reactions in which

X appears as a product, while the overall out-flux F out
X is the sum over out-fluxes F out

X,r of all reactions
in which X acts as a substrate, i.e.,

F in
X =

∑

r

F in
X,r, (5)

F out
X =

∑

r

F out
X,r. (6)

If a flux of atoms, e.g., carbon (C) atoms, is of interest rather than a flux of molecules, the flux can be
expressed as:

F
′

X = nFX = nνX,rvr, (7)

where n denotes either the number of atoms of interest within a molecule X or the number of carbon
atoms participating in the reaction r. The reference to these fluxes should be clear from the context.

Constraints of metabolic steady state

In a metabolic steady state, the overall in-flux F in
X equals the overall out-flux F out

X . Therefore, both in-
and out-fluxes can be used to describe the overall flux through the pool of X :

FX = F in
X = F out

X . (8)

Since in a reaction network at metabolic steady state, the total pool size, xT , of each metabolite, X , does
not change, the mass balance equation yields the following constraint:

dxT

dt
=
∑

r

F in
X,r −

∑

r

F out
X,r = 0. (9)

For a given reaction network, by using Eqs. (3) and (4), this can be alternatively expressed as:

N~v = 0, (10)
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where N denotes the stoichiometric matrix and ~ν is the rate vector (Heinrich and Schuster, 1996). Each
solution of the algebraic systems in Eqs. (9) and (10) describes a possible flux distributions for the reaction
network in a metabolic steady state. The general solution can be expressed as a linear combination
of a set comprising l linearly independent flux distributions, generating the kernel (null-space) of the
stoichiometric matrix. For instance, the general solution can be expressed as a non-negative linear
combination of extreme pathways (Schilling et al., 2000) or elementary flux modes (Schuster et al., 1999).
If all reactions are assumed to be irreversible, or rather only the net flux of the reactions is of interest,
each extreme pathway is an elementary mode (Papin et al., 2004). Each of these descriptions provides a
parameterization of all possible steady-state flux distributions.

Fluxes of unlabeled metabolites

Due to assumptions (ii) and (iii), the unlabeled out-flux fout
X,r in the out-flux F out

X,r from the pool of X is
given by:

fout
X,r = F out

X,r

xu

xT
. (11)

In other words, the unlabeled fraction of the out-flux equals the unlabeled fraction of the corresponding
pool of the substrate.

Out-fluxes may result in in-fluxes to the product pool of the reaction. The unlabeled fraction of an
in-flux depends on all reactants. The resulting product is only unlabeled if all reactants are unlabeled.
Given a reaction r in which metabolite X is produced by consuming νi,r molecules of metabolite Xi, the
reaction can be written as:

∑

i

νi,rXi −→ X, (12)

where νi,r are the stoichiometric coefficients. Let

Sr
e = {Xi | νi,r 6= 0} (13)

denote the set of substrate metabolites of reaction r. The unlabeled in-flux, f in
X,r, of such a reaction is

given by the following mass-action-like relationship:

f in
X,r = F in

X,r

∏

i∈Sr
e

(

xu
i

xT
i

)νi,r

. (14)

The total fluxes F in
X,r and F out

Xi,r
of such a multi-molecular reactions are stoichiometrically constrained, as

shown in Eqs. (3) and (4), by:

F in
X,r =

F out
Xi,r

νi,r

. (15)

In-fluxes from decay-like reactions with more than one product, i.e., reactions of the form:

X −→
∑

j

νjXj , (16)

are more difficult to handle in the framework of KFP, as partially labeled molecules can split in labeled
and unlabeled fragments. These reactions are excluded from further considerations, and, as a result,
reactions of type given in Eq. (12) are treated as irreversible. To solve this problem several approaches
may be applied:

1. Carbon transition maps (CTM) (Mu et al., 2007) offer the means to resolve the problem; if accurate
mappings are known. The number of equations increases exponentially and leads to difficulties with
regard to fitting the equations to available experimental data.
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2. The unlabeled in-flux can be extended to:

f in
Xj ,r = F in

Xj ,r

(

xu

xT
+

n
∑

i=1

θi,r(t)
x(i)

xT

)

, (17)

where n denotes the number of carbon atoms of the metabolite Xj , x(i), the isotopic content
with i labeled carbon atoms and θi,r, denoting a time-dependent function, describes the effective
generation of unlabeled metabolite Xj form labeled metabolite X . Note that:

f in
Xj ,r ≤ F in

Xj ,r ⇒
xu

xT
+

n
∑

i=1

θi(t)
x(i)

xT
≤ 1. (18)

The function θi could be approximated by fitting the model to experimental data and may further
be restricted by additional knowledge about the underlying reaction.

3. If the label can be assumed to be randomly distributed within each mass-isotopomer for the sub-
strates molecule and all times, all θi,r(t) are constant. They are given by the ratio of the number of
possible labeling patterns resulting in an unlabeled product to the number of all possible labeling
patterns:

θi(t) =

(

n
i

)

(

n−ns

i

) . (19)

The number of carbon atom of the product is denote as ns.

4. Partially labeled pools can be included in the model. Thereby, partially labeled pools trace partially
labeled molecules which can decay in their unlabeled and labeled “sub-units“. This approach might
be only useful for small network, since such a tracing or mapping of a smallest sub-unit may
essentially be identical to the CTM approach, discussed above.

Dynamics of unlabeled/mono-isotopic states

The mass-balance equation for the unlabeled amount of a metabolic pool X can be derived by summing
over all in-flux and out-flux reactions, in which X participates as product and substrate, respectively:

dxu

dt
=
∑

r

F in
X,r

∏

i∈Sr
e

(

xu
i

xT
i

)νi

−
∑

r

F out
X,r

xu

xT
. (20)

Similarly, by using Eqs. (1) and (20), the unlabeled fraction of X is described by:

dx̃

dt
=
∑

r

F in
X,r

xT

∏

i∈Sr
e

x̃νi

i −
∑

r

F out
X,r

xT
x̃. (21)

An analytical solution of this non-linear differential equation cannot be found in general. However, a
numerical solution can be readily obtained. The possible stiffness of the system of differential equations
has to be taken into account, and a proper numerical integration algorithms chosen (Ernst and Gerhard,
1996; Hindmarsh, 1983; Petzold, 1983). For a given metabolic network such a system of differential
equations can be derived and solved; moreover, a minimum-error-solution can be fitted to available
data. To this end, different heuristic techniques of numerical non-linear optimization, e.g., simulated
annealing, evolutionary algorithms, or swarm-based techniques, can be applied (Chong and Zak, 2008).
The optimization problem is constrained by the condition of the metabolic steady state in Eq. (9). The
choice of optimization algorithm depends on the particular system properties and, thus, on the network
structure. For instance, for a simple network of only a few metabolites other optimization algorithms
based on gradient-descend or Newton method may be more efficient.

Note that for resolving a minimum error solution for the fluxes, the total pool size, xT , of every
metabolite in the system has to be known. According to the experimental setup, the initial conditions
of the system are given as fully unlabeled pools for most of the metabolites. Therefore, the used ex-
perimental data have to be corrected for natural abundance (van Winden et al., 2002). In addition, one
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or maybe more in-fluxes are fully labeled, or their time-dependent labeling state is known. Pools which
are partially or fully labeled in the beginning are pools which are replaced by labeled metabolites due
to the experimental setup. A complete replacement of such metabolites can be modeled as an indicator
function. In addition variance-weighted error function is predominantly used when dealing with data
showing variance (Press et al., 2007).

Technical Remarks

The effective unlabeled fraction hin
X(t) of the in-flux to a pool x can be defined as the ratio of the sum

over all unlabeled in-fluxes f in
X,r, given in Eq. (14), to the overall flux FX through the metabolic pool,

given in Eq. (8); thus:

hin
X(t) =

∑

r F in
X,r

∏

i∈Sr
e

(

xu
i

xT
i

)νi

∑

r F in
X,r

=

∑

r F in
X,r

∏

i∈Sr
e

(

xu
i

xT
i

)νi

F in
X

. (22)

By using Eqs. (5)-(8) and (22), the mass-balance equation for x can be expressed as:

dxu

dt
= FXhin

X − FX

xu

xT
. (23)

With respect to Eqs. (14) and (22), if there does not exist X such that X = Xi with i ∈ Sr
e , we call f in

X,r

and hin
X independent of x(t). In this strictly forward-coupled case, Eq. (20) becomes an in-homogeneous

linear differential equation whose solution can be expressed as:

xu(t)

xT
= e−kt + k

∫ t

0

e−kτhin
X(t − τ) dτ, (24)

k =

∑

r FX,r

xT
=

FX

xT
. (25)

With respect to the theory of linear filters (Brockwell and Davis, 2006), each metabolic pools whose in-
fluxes are independent of its own state can be viewed as a linear filter of first order, which exponentially
smooths hin

X(t) as its input function. In other words, each metabolic pool relaxes to the state of its in-flux
with its own time constant k and in this way smooths the input. The solution for all xu(t) in strictly
forward-coupled networks or parts of a networks can be calculated successively by applying Eq. (24).

For a system composed only of mono-molecular reactions the mass-balance equation Eq. (20) reduces
to

dxu

dt
=
∑

r

F in
X,r

xu
i

xT
i

−
∑

r

F out
X,r

xu

xT
. (26)

The index i denotes the pools of the substrates of the reaction r. For reasons of brevity the notation can
be changed by denoting fluxes from pool i to pool j as Fi,j :

dxu
m

dt
=
∑

i

Fi,m

xu
i

xT
i

−
∑

j

Fm,j

xu
m

xT
m

. (27)

Here Eq. (27) represents a linear differential equations with constant coefficients. The form of the ana-
lytical solution can always be found by standard techniques (Bronshtein et al., 2007), and is represented
by a linear combination of exponential functions. Note that this only refers to the non-singular solution.
Moreover, for a reversible mono-molecular reaction, a rapid-equilibrium approximation can be employed
(Heinrich and Schuster, 1996). If metabolic pools are connected via high exchange fluxes, they can be
approximately modeled as one pool, showing the same labeling behavior. This, then, decreases the num-
ber of independent parameters of the system. As a result, the differential equation system is converted
to algebraic differential equation system.

Illustrative examples

In the following, the KFP approach will be illustrated with five examples of reactions typically arising
in large models. In each example a single metabolite pool takes a fully labeled in-flux, whereas all pools
are fully unlabeled in the beginning.

27



Supplemental Data. Szecowka et al. (2013). Plant Cell 10.1105/tpc.112.106989.

Example 1: Exponential washout of a single metabolite The washout-behavior of one pool of a
metabolite X1 with only one in-flux, which is completely labeled in the beginning of the experiment, can
be described by:

dxu
1

dt
= −F

xu
1

xT
1

. (28)

As there is only labeled in-flux to the pool, the unlabeled in-flux is equal to zero. The solution of this
equation is an exponential function of the unlabeled part of the pool (see Supplemental Figure M1A):

xu
1 (t) = xT e−k1t, (29)

k1 =
F

xT
1

. (30)

Example 2: Metabolic chain In a mono-molecular chain, the metabolite X1 (from Example 1) may
irreversibly react to produce metabolite X2. The differential equation for xu

2 , as a successor, can be
expressed as:

dxu
2

dt
= F

xu
1

xT
1

− F
xu

2

xT
2

. (31)

Since there is no flux from x2 to x1, the equations for x1 remain unchanged. The corresponding solution:

xu
2 (t)

xT
2

=
k1

k1 − k2
e−k2t −

k2

k1 − k2
e−k1t, (32)

k1 =
F

xT
1

, (33)

k2 =
F

yT
2

, (34)

shows a delay, which is caused by unlabeled molecules coming from pool x1 and passing through pool x2

(see Supplemental Figure M1B).

Example 3: Branched chain and unlabeled in-fluxes Additional completely unlabeled in-fluxes
Fu

0,i to one of the pools in such a irreversible mono-molecular chain may be caused by degradation of
macro-molecules, prohibiting complete washout of the pool (Yuan et al., 2008). Such a system is specified
by:

dxu
1

dt
= Fu

0,1 − (F1,2 + F1,0)
xu

1

xT
1

, (35)

dxu
2

dt
= F1,2

xu
1

xT
1

+ Fu
0,2 − F1,0

xu
2

xT
2

. (36)

The system in Eqs. (35) and (36) describes a simple irreversible branched chain with an additional out-flux
of the precursor pool, x1. The corresponding solution shows an offset, which is given by the proportion
of the effective unlabeled in-flux to the overall in-flux of the pool (see Supplemental Figure M1C).
The effective unlabeled in-flux is caused by all unlabeled in-fluxes of the precursor pools:

xu
1 (t)

xT
1

= (1 − α)e−k1t + α, (37)

xu
2 (t)

xT
2

=
(1 − α)(1 − β)

k1 − k2
(k1e

−k2t − k2e
−k1t) + (1 − (1 − α)(1 − β))), (38)

k1 =
F1,2 + F1,0

xT
1

, (39)

k2 =
F1,2 + F0,2

xT
2

, (40)

α =
F0,1

F0,1 + F1,2
, (41)
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β =
F0,2

F0,2 + F2,0
. (42)

As already mentioned, a mono-molecular reaction network can be described by a system of linear ordinary
differential equations. The solution for the time-dependent behavior of the unlabeled fraction is in general
a sum of exponential functions. The non-singular case is here excluded. In an irreversible branched chain,
all time constants of the exponential are given as quotients of the overall fluxes and pool sizes, which can
be derived from Eq. (24). Note that the behavior changes if the system becomes reversible or cyclic. In
such a case, the time-constants can be expressed as a function of all pools and fluxes in the system.

Example 4: Reversibility As the simplest case, a reversible mono-molecular reaction can be captured
by an irreversible in-flux and an irreversible out-flux. For reversible reactions, it is useful to describe the
flux as net and exchange fluxes:

F net = F1,2 − F2,1, (43)

F ex = F2,1. (44)

The example can in turn be described as:

dxu
1

dt
= −(F net + F ex)

xu
1

xT
1

+ F ex xu
2

xT
2

, (45)

dxu
2

dt
= (F net + F ex)

xu
1

xT
1

− (F net + F ex)
xu

2

xT
2

. (46)

The time constants k1,2 of this system are given by:

k1,2 = −
(F net + F ex)(xT

1 + xT
2 )

xT
1 xT

2

±

√

(F net + F ex)2(xT
1 + xT

2 )2

(xT
1 xT

2 )2
−

F net + F ex

xT
1 xT

2

F net. (47)

If the exchange flux F ex equals zero, the system becomes identical to that in Example 2 with the corre-
sponding time constants. The limits of k1 and k2 for F ex at infinity show the following behavior:

lim
F ex→∞

k1 = −
F net

xT
1 + xT

2

, (48)

lim
F ex→∞

k2 = −∞, (49)

where k1 results in the same value one would expect for a pool z with corresponding pool size zT =
xT + yT , which behaves like Example 1 (Eqs. (29) - (30)). In this case, the solution for both pools is
the same exponential decay with time constant k1. The second time-constant k2 bears less importance
for the solution, with F ex → ∞, since the weight of the corresponding exponential function reaches
zero. Both pools are in rapid equilibrium and, therefore, they behave as one pool. The dashed lines in
Supplemental Figure M1D illustrates the smaller differences in the time-dependent behavior of both
pools with increasing exchange flux.

Example 5: An irreversible bi-molecular reaction In an irreversible bi-molecular system, both
pools of the substrates might show and exponential decay of their unlabeled fractions:

xu
1 (t)

xT
1

= e−k1t, (50)

xu
2 (t)

xT
2

= e−k2t. (51)

The dynamic behavior of the pool of the product, according to Eq. (24), can be expressed as:

dxu
3

dt
= F(1,2),3

xu
1

xT
1

xu
2

xT
2

− F(1,2),3
xu

3

xT
3

. (52)
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Fnet
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Supplemental Figure M1: Illustration of KFP on reactions typically occurring in network
models. Grey arrows and lines indicate fluxes completely labeled at t = 0. Red lines indicate precursors
and blue lines successors. Solid lines in panel D are for F ex = 0, and dashed lines are for F ex > 0.
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The solution for the product x3 is:

xu
3 (t)

xT
3

=
k3

k3 − (k1 + k2)
e−(k1+k2)t −

k1 + k2

k3 − (k1 + k2)
e−k3t, (53)

k3 =
F(1,2),3

xT
3

. (54)

Although the solution shows a delay, the unlabeled fraction of the product can decay faster than the
reactants (see Supplemental Figure M1E). This follows from the higher number of possible labeling
positions in the product.

Supplemental Methods 4. Optimization - Fit to the mass-spectrometric data

According to Eqs. (71) and (72), all fluxes in the differential equations system can be expressed as a
function of the independent parameters. The system can be integrated numerically for a given set of
parameters. The obtained solutions describe the time-dependent washout of the unlabeled fraction for
all modeled pools. The solutions for the phosphorylated hexoses are compartmentalized between plastid
and cytosol. Therefore, the plastidic and cytosolic pool have to be weighted summed in order to fit them
to the experimental data of the unlabeled fraction of the metabolite:

x̃all(t) = ηpl.x̃pl.(t) + ηcyt.x̃cyt.(t). (55)

The weights η display the proportion provided by non-aqueous-fractionation.
The variance-weighted mean squared error (WMSE) is given by:

WMSE =
∑

m

∑

t

(x̃obs.
t,m − x̃sim.

t,m )2

σobs.
t,m

, (56)

where x̃obs.
t,m denotes the observe unlabeled fraction of metabolite m at time t and x̃sim.

t,m the corresponding
simulation. In order to find a minimum-error solution, a simulated annealing algorithm (Kirkpatrick et al.,
1983) is applied, followed by a quasi-Newton optimization (BFGS) (Byrd et al., 1995). All ϕi,j are hy-
perbolically transformed by:

ϕ′
i,j =

ϕi,j

1 + ϕi,j

(57)

in order to take values from the interval [0, 1) (Wiechert and De Graaf, 1997). For each particular fit, 40
such runs are performed and the best one is chosen. The used parameters are given in Supplemental Table M2.
Supplemental Dataset 1 includes the used the experimental data and the corresponding standard de-
viations.

For Tre6P and Suc6P only one replica was measure. In order to obtain a standard deviation for this
measurement we chose the largest standard deviation of the time course of the particular metabolite.
Supplemental Table 3 shows the experimental data of the poolsizes.

The model is implemented by using Python 2.6.0, Numpy 1.3.0 and Scipy 1.3.0. Numerical integration
is performed with scipy.integrate.odeint, which is a wrapper for LSODA (Petzold, 1983) from the
library ODEPACK (Hindmarsh, 1983). The simulated annealing was implemented in Python 2.6.0. The
quasi-Newton optimization is performed by scipy.optimize.fmin l bfgs b (Zhu et al., 1997).

Supplemental Methods 5. Estimation of confidence intervals from Monte

Carlo simulation

Monte Carlo simulation is performed as described in Numerical Recipes (Press et al., 2007). For each
metabolite, every time point in the time course of the unlabeled fraction is resampled from an assumed
standard distribution with mean and standard deviation shown in Supplemental Dataset 1. The
optimization is repeated with the resampled data for 1000 times. The obtained distribution of fluxes is
used to determine the 95% confidence interval for each flux.
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parameter value

initial temperature 10.
minimal temperature 0.000001
factor of temperature decline 0.9
runs per temperature 200
standard deviation of noise 0.1

Supplemental Table M2: Parameters of the simulated annealing The second column lists the
values for the parameters of the simulated annealing used to fit the model.

Supplemental Methods 6. Application to Central Carbon Metabolism

We applied extended KFP to the central carbon metabolism of C3-plants. The used pathway model com-
prises a part of the Calvin-Benson cycle and the pathway of starch synthesis, both located in the chloro-
plast, the photorespiration pathway, which takes place in different compartments, as well as the pathways
of the synthesis of sucrose, trehalose and myo-inositol in the cytosol (see Supplemental Figure M2A).
Furthermore, a branch to the amino-acid metabolism via 2PGA is considered in the setting of the equa-
tions. However, we note that in the model used for the estimation of fluxes this branch is constrained to
zero.

From the considered pathway model, a system of differential equation is created, the solution of
which gives the dynamic labeling behavior of all involved metabolic pools for a given flux distribution.
The considered approach avoids the simulation of the transmission of labeled carbon atoms through the
intermediates of the Calvin-Benson cycle. Instead the unlabeled in-flux of the carboxylation and the
oxygenation of RuBP to the pools of 3PGA and glycine is modeled separately. These input models
act as inhomogeneities of the differential equation system. The labeled carbon atoms are assumed to
be randomly distributed between all possible position within a RuBP molecule. The further dynamics
of the unlabeled fractions is described by extended KFP. The system is then fitted to time-resolved
experimental data by using a simulated annealing approach (Kirkpatrick et al., 1983), followed by quasi-
Newton optimization. The effect of partially labeled glycine molecules resulting in unlabeled serine
molecules is neglected as the observed partially labeled fraction of glycine is low.

Note the difference between the model as it is implemented and the model used for the analysis. For
the analysis some reactions are restricted to be irreversible and the flux via 2PGA towards amino acid
metabolism is constrained to zero.

Treatment of experimental data

The unlabeled fraction is calculated from mass-spectrometric experimental data. The unlabeled metabo-
lite content xu(t) is quantified by the mono-isotopic peak x̂0(t). The total content (or pool size) of a
metabolic pool xT (t) is calculated by the sum of the measured isotopic peaks x̂i(t), as follows:

xu(t) = x̂0(t) (58)

xT (t) =
∑

i

x̂i(t). (59)

The unlabeled fraction x̃ is then given by the ratio:

x̃(t) =
xu(t)

xT (t)
=

x̂0(t)
∑

i x̂i(t)
. (60)

In addition, the i-th mass-isotopic fraction can be calculated:

x(i)(t) =
x(i)

xT (t)
=

x̂0(t)
∑

i x̂i(t)
. (61)

The mass-spectrometric data are corrected for natural abundance of the isotopes (van Winden et al.,
2002). Therefore, the metabolic pools are assumed to be completely unlabeled at the beginning of the
experiment.
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A B C

D E

F G

Supplemental Figure M2: Schematic representation of the pathway model and its modes
(A) Pathway model with indicies of metabolite (yellow - chloroplast, blue - cytosol, red - intermediates
of photorespiration represented by one pool for each, gray - triosephosphates of chloroplast and cytosol
in rapid equilibrium). (B-G) The 6 modes that generate the steady-state net flux distributions, (B)
photorespiration, (C) starch, (D) sucrose, (E) trehalose, (F) myo-inositol, (G) amino acids. Each
reversible reaction is additionally described by an exchange flux. Note, each metabolite is denoted
by a number, which is used as index in the mathematical description of the model. In the actual
implementation of the model, mode (G) is set to zero.
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The phosphorylated hexoses, FBP, F6P, G6P, and G1P, are each modeled as two pools –one in the
chloroplast, as components of the starch pathway, and the other one in the cytosol, as components of
glycolysis. As only the sum of both pools can be measured via MS, non-aqueous-fractionation data is
used to split the measured pool sizes of these metabolites into a total cytosolic and plastidic pool size.
Non-aqueous-fractionation data, η, provide the proportion of a metabolites in the compartments. The
pool sizes in the cytosol and plastid are calculated by the following:

xT
pl. = ηX

pl.x
T , and (62)

xT
cyt. = ηX

cyt.x
T . (63)

The pathway model

The model includes some additional assumptions:

1. The intermediates of photorespiration glycine, serine, and glycerate are all modeled as one pool for
each of them. Their compartmentalization is neglected.

2. The triosephosphates, 3PGA and DHAP, in cytosol and chloroplast are assumed to be in rapid
equilibrium and are, therefore, also modeled as one pool for each of the two.

3. GAP is assumed to be in rapid equilibrium with DHAP and is of negligible content. As a result,
it is not a part of the model, and its functions are approximated by those of DHAP (Stitt et al.,
1983). The reactions:

3PGA −→ GAP, (64)

GAP −→ DHAP and (65)

GAP + DHAP −→ FPB (66)

are, therefore, lumped to:

3PGA −→ DHAP and (67)

2 DHAP −→ FBP. (68)

Description of the steady-state flux distribution

All fluxes are constrained to metabolic steady state, given in Eq. (9). The distribution of net fluxes can
be described by a positive linear combination of six independent modes, M l, where:

~F net =

6
∑

l=1

φl
~M l. (69)

Therefore, an individual net flux, F net
i,j , between the pools of i and j is given by:

F net
i,j =

6
∑

l=1

φlM
l
i,j . (70)

Each mode refers to one independent steady-state flux distribution, which satisfies the constraints of
metabolic steady state. A mode can be understood as a possible route of a fixated carbon atom towards
one of the out-flux of the system. Each mode comprises the Calvin-Benson cycle, including the carbon
fixation by RuBisCo and the further pathway to one of the six out-fluxes of the system. The Calvin-
Benson cycle has to be included to each mode, because part of the fixed carbon is used to regenerate
RuBP to maintain the steady state. Therefore, 5 molecules of PGA are necessary to restore 3 molecules
of RuBP for each molecule of 3PGA which effectively leaves the cycle.

The six modes are illustrated in Supplemental Figure M2 and listed in Supplemental Table M3.
They are denoted in units of carbon atoms participating in the corresponding reaction and are normalized
in a way so that each out-flux from the system has a value of 1 carbon atom per second. In- and out-fluxes
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are then given in terms of their fixed stoichiometric proportion to this flux. To use units of carbon atoms
in the further description, all pool sizes need to also transformed to this unit. Therefore, all pool sizes in
[mol molecules] are multiplied by the number of carbon atoms in the corresponding molecule.

For example: The mode M1 describes the theoretical case that all fixated carbon atoms are lost via
photorespiration. The oxidation of 2 molecules of RuBP (10 carbon atoms) results in 2 molecules of 3PGA
(6 carbon atoms) and 2 molecules of glycine (4 carbon atoms). The corresponding flux F(O2,0),(1,16) of
the mode M1 in Supplemental Table M3, therefore, has a value of 10. Both molecules of glycine form
1 molecule of serine (3 carbon atoms) and 1 molecules of CO2 (1 carbon atom). As 4 carbon atoms
are involved, F16,(7,CO2) is 4. The flux to CO2 has a value of 1 as posited. Serine reacts to glycerate,
followed by a reaction to 2PGA. Altogether 3 molecules of 3PGA (9 carbon atoms) are formed. With an
additional carboxylation of 1 molecule of RuBP (5 carbon atoms) and 1 molecule of CO2 (1 carbon atom)
to 2 molecules of 3PGA, 5 molecules of 3PGA (15 carbon atoms) can restore all 3 consumed molecules
of RuBP. The flux of the carboxylation F(CO2,0),1 has a value of 6 carbon atoms. The out-flux of 3PGA
F1,2 is equal to its in-flux of 15 carbon atoms, coming from RuBP and glycerate. This flux of 15 carbon
atoms then splits in a flux F2,0 from DHAP to RuBP of 9 atoms and fluxes to RuBP via FBP and F6P
of 6 atoms: F2,3, F3,4 and F4,0.

If the model only comprises irreversible reaction, all possible flux distributions can be described by six
parameters φl. Each additional exchange flux F ex

i,j introduces one more parameter. An exchange flux

could also be understood as a mode ~M ex of its own, describing a futile cycle between metabolites, which
does not contribute to a net flux or any other flux of the network. With the assumption that net fluxes
are positive, forward fluxes, Fi,j , and backward fluxes, Fji, from metabolite i to metabolites j can be
expressed as:

Fi,j = F net
i,j + F ex

i,j (71)

=

6
∑

l=1

φlM
l
i,j + F ex

i,j

=

6
∑

l=1

φlM
l
i,j + ϕi,jM

ex
i,j ,

and
Fj,i = F ex

i,j = ϕi,jM
ex
i,j . (72)

To express all parameters in a consistent way, M ex has a value of 1 [carbon atom per second] and ϕi,j ,
like φl, is unit-less.

In principle the consideration of reversible reaction can introduce additional futile cycle, which com-
prise more than one reaction. In this model such cycles do not occur.

In addition the parameter ϕi,j can be hyperbolically transformed (Wiechert and De Graaf, 1997).

The input models

In the model, the unlabeled in-flux to the pools of 3PGA and glycine via the carboxylation and oxygena-
tion of RuBP are assumed to be known and modeled independently. CO2 is assumed to be completely
labeled at t = 0 and described by:

x̃CO2
(t) = 0, for t > 0. (73)

The unlabeled in-fluxes f in
X,r to the pools of X via reaction r is described by the product of the metabolic

steady-state flux F in
X,r and its unlabeled fraction hin

X,r:

f in
X,r(t) = F in

X,rh
in
X,r(t). (74)

For a reaction with one product molecule the unlabeled fraction of the in-flux hin
X,r(t) is given in the

extend KFP by the product of the unlabeled fraction of the substrates (see Eq.(14)). The unlabeled
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photores. starch sucrose trehalose myo-inositol 2PGA
flux M1 M2 M3 M4 M5 M6

F(0,CO2),1 6 6 6 6 6 6
F0,1 5 5 5 5 5 5
FCO2,1 1 1 1 1 1 1

F(0,O2),(1,16) 10 0 0 0 0 0
F0,1 6 0 0 0 0 0
F0,16 4 0 0 0 0 0

F1,2 15 6 6 6 6 5
F2,3 6 3 2 2 2 2
F2,0 9 3 3 3 3 3
F3,4 6 3 2 2 2 2
F4,5 0 1 0 0 0 0
F4,0 6 2 2 2 2 2
F5,6 0 1 0 0 0 0
F6,7 0 1 0 0 0 0
F7,O 0 1 0 0 0 0
F2,8 0 0 1 1 1 0
F8,9 0 0 1 1 1 0
F9,10 0 0 1

2 1 1 0
F10,11 0 0 1

2
1
2 0 0

F11,12 0 0 1
2

1
2 0 0

F(9,12),13 0 0 1 0 0 0
F9,13 0 0 1

2 0 0 0
F12,13 0 0 1

2 0 0 0
F13,O 0 0 1 0 0 0
F10,14 0 0 0 0 1 0
F14,O 0 0 0 0 1 0
F(10,12),15 0 0 0 1 0 0

F10,15 0 0 0 1
2 0 0

F12,15 0 0 0 1
2 0 0

F15,O 0 0 0 1 0 0
F16,(17,CO2) 4 0 0 0 0 0

F16,O 1 0 0 0 0 0
F16,17 3 0 0 0 0 0

F17,18 3 0 0 0 0 0
F18,1 3 0 0 0 0 0
F1,19 0 0 0 0 0 1
F19,O 0 0 0 0 0 1

Supplemental Table M3: Composition of elementary flux modes. The modes M1 - M6 are
expressed in units of carbon atoms. See Supplemental Figure M2 and Supplemental Table M5 for
definition of fluxes. Indented fluxes correspond to an in- or out-flux from of a pool of a multi-molecular
reaction. The environment of the system is denoted by O, which appears as an index in the out-fluxes of
the system.
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in-fluxes to 3PGA and glycine via the carboxylation and oxygenation of RuBP:

RuBP + CO2 −→ PGA + PGA, (75)

RuBP + O2 −→ PGA + Gly, (76)

do not exclusively depend on the unlabeled fraction of RuBP. Unlabeled product molecules can spawn
from partially labeled RuBP molecules, thus the contribution of higher mass-isotopomers have to be taken
into account. We assume a random distribution of label between all possible labeling positions for all
relevant mass-isotopomers of RuBP at all times. Following this assumption, a proper input model for the
unlabeled fraction of the in-fluxes hin

X,r(t) is chosen and its parameters are estimated from the available
data. The assumption is driven by the high turn-over rate and the complexity of the Calvin-Benson cycle.

In the following the approach is illustrated for the unlabeled in-fluxes to 3PGA via the oxygenation
of RuBP. In this reaction a molecule of RuBP (five C atoms) reacts with a molecule of O2 to a molecule
of 3PGA (three C atoms) and a molecule of glycine (two C atoms). Unlabeled RuBP molecules result in
unlabeled products. RuBP molecules with one or two labeled carbon atoms result in an unlabeled 3PGA
molecule, if the particular three carbon atoms, forming the 3PGA molecule, are unlabeled. Assuming a
random distribution of the label with all possible labeling positions in RuBP, the fraction of resulting
unlabeled product molecule can be calculated. They are given by the number of permutations of positional
labeling pattern resulting in an unlabeled product to the number of all possible permutations in the
substrate molecule. For example, if a RuBP molecule has one labeled carbon atom, there are five possible
labeling positions. Three particular carbon atoms result in a 3PGA molecule. The probability that these
three carbon atoms are unlabeled is given by 2 to 5. The unlabeled fraction of the in-flux to 3PGA and
glycine via the RuBP-oxygenation can be expressed as:

hin
3PGA,oxy.(t) =

5
∑

i=0

θ
(i)
3PGA,oxy.x̃

(i)
RuBP(t), (77)

hin
gly,oxy.(t) =

5
∑

i=0

θ
(i)
gly,oxy.x̃

(i)
RuBP(t). (78)

The i-th mass-isotopic fraction of RuBP is denoted by x̃
(i)
RuBP. The corresponding fraction resulting in

unlabeled products is expressed as θ(i). Similar consideration lead to the expression for the fraction of
the unlabeled in-flux to 3PGA via the RuBP carboxylation. Each of the two 3PGA molecules have to be
treated separately. One of the 3PGA molecules is always labeled due to the assumption of fully labeled
CO2. The fraction of the unlabeled in-flux via the second molecule is described by:

hin
3PGA,carb.(t) =

5
∑

i=0

θ
(i)
3PGA,carb.x̃

(i)
RuBP(t). (79)

The values for all θ’s are listed in Supplemental Table M4.

hin θ(0) θ(1) θ(2) θ(3) θ(4) θ(5)

hin
3PGA,carb. 1 0.4 0.1 0 0 0

hin
3PGA,oxy. 1 0.4 0.1 0 0 0

hin
gly,oxy. 1 0.6 0.3 0.1 0 0

Supplemental Table M4: Fractions θ. The table includes the fractions θ which generate unlabeled
products from mass-isotopic fraction of RuBP.

The Eqs.(77)-(79) relate the unlabeled in-fluxes with experimental data. The fraction of the unlabeled
in-fluxes is approximated by a linear combination of two exponential functions:

hin ≃ hinput = Ae−at + Be−bt where A + B = 1. (80)

We refer to it as the input model for the corresponding in-flux. Each input model hinput is fitted to
the experimental data of hin(t) using a quasi-Newton method to minimize to variance-weighted sum of
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residual. Following this, the dynamic labeling behavior of the in-fluxes to 3PGA (via the carboyxlase
and oxygenase reactions) and glycine (via the oxygenase reaction) can be calculated.

Note, although intermediate of the Calvin-Benson cycle are not simulated in the system of differential
equation, they still are consider for the steady-state flux distribution.

Implementation of the system of differential equations

The system of ordinary differential equations is shown in Eqs. (82) - (111). To simplify the notation, the
substitution:

x̃m =
xu

m

xT
m

(81)

is used. The indicies refer to special metabolites as shown in Supplemental Figure M2. The input
models h

input
3PGA,oxy., h

input
3PGA,carb. and h

input
gly,oxy. are given in Eq. (80) and denoted as in the corresponding

section. All fluxes are denoted in fluxes of carbon atoms participating in a reaction, what influences the
factor in several equations.

3PGA :

xT
1

dx̃1

dt
=

3

5
F(O2,0),(1,16)h

input
3PGA,oxy. +

1

2
F(CO2,0),(1)h

input
3PGA,carb.

+ F18,1x̃18 + F2,1x̃2 + F19,1x̃19

− (F1,2 + F1,19) x̃1

(82)

DHAP : xT
2

dx̃2

dt
= F1,2x̃1 + F3,2

(

x̃3 +
1

2
x̃∗

3

)

+ F8,2

(

x̃8 +
1

2
x̃∗

8

)

(83)

− (F2,3 + F2,8 + F2,0 + F2,1) x̃2 (84)

FBPpl. : xT
3

dx̃3

dt
= F2,3 (x̃2)

2
− (F3,4 + F3,2) x̃2 (85)

xT
3

dx̃∗
3

dt
= 2F2,3x̃2 (1 − x̃2) − (F3,4 + F3,2) x̃∗

2 (86)

F6Ppl. : xT
4

dx̃4

dt
= F3,4x̃3 − (F4,5 + F4,0) x̃4 (87)

G6Ppl. : xT
5

dx̃5

dt
= F4,5x̃4 + F6,5x̃6 − (F5,6 + F5,4) x̃5 (88)

G1Ppl. : xT
6

dx̃6

dt
= F5,6x̃5 + F7,6x̃6 − (F6,7 + F6,5) x̃6 (89)

ADPG : xT
7

dx̃7

dt
= F6,7x̃6 − (F7,0 + F7,6) x̃7 (90)

FBPcyt. : xT
8

dx̃8

dt
= F2,8 (x̃2)

2
+ F9,8x̃9 − (F8,9 + F8,2) x̃8 (91)

xT
8

dx̃∗
8

dt
= 2F2,8x̃2 (1 − x̃2) + F9,8x̃

∗
9 − (F8,9 + F8,2) x̃∗

2 (92)

F6Pcyt. : xT
9

dx̃9

dt
= F8,9x̃8 + F10,9x̃10 − (F9,10 + F9,13 + F9,8) x̃9 (93)

xT
9

dx̃∗
9

dt
= F8,9x̃

∗
8 + F10,9x̃

∗
10 − (F9,10 + F9,13 + F9,8) x̃∗

9 (94)

G6Pcyt. : xT
10

dx̃10

dt
= F9,10x̃9 + F11,10x̃11 (95)

− (F10,11 + F10,14 + F10,9 + F10,15) x̃10 (96)

xT
10

dx̃∗
10

dt
= F9,10x̃

∗
9 + F11,10x̃

∗
11 (97)

− (F10,11 + F10,14 + F10,9 + F10,15) x̃∗
10 (98)

G1Pcyt. : xT
11

dx̃11

dt
= F10,11x̃10 + F12,11x̃12 (99)

− (F11,12 + F11,10) x̃11 (100)
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xT
11

dx̃∗
11

dt
= F10,11x̃

∗
10 + F12,11x̃

∗
12 (101)

− (F11,12 + F11,10) x̃∗
11 (102)

UDPG : xT
12

dx̃12

dt
= F11,12x̃11 − (F12,13 + F12,15 + F12,11) x̃11 (103)

xT
12

dx̃∗
12

dt
= F11,12x̃

∗
11 − (F12,13 + F12,15 + F12,11) x̃∗

11 (104)

Suc6P : xT
13

dx̃13

dt
= F(9,12),13x̃9x̃12 − F13,0x̃13 (105)

myo-Inositol : xT
14

dx̃14

dt
= F10,14x̃10 − F14,0x̃14 (106)

Tre6P : xT
15

dx̃15

dt
= F(10,12),15x̃10x̃12 − F15,0x̃15 (107)

Glycine : xT
16

dx̃16

dt
=

2

5
F(O2,0),(1,16)h

input
gly,oxy. − F16,(CO2,17)x̃16 (108)

Serine : xT
17

dx̃17

dt
=

3

4
F16,(CO2,17) (x̃16)

2
+ F18,17x̃18 − F17,18x̃17 (109)

Glycerate : xT
18

dx̃18

dt
= F17,18x̃17 − (F18,1 + F18,17) x̃18 (110)

2PGA : xT
19

dx̃19

dt
= F1,19x̃1 − (F19,0 + F19,1) x̃19 (111)

Some reactions are assumed to be irreversible. The corresponding backward fluxes are not included in the
system of differential equations. The irreversibility of all reactions is listed in Supplemental Table M5
and illustrated in Supplemental Figure M3A. In the following, additional explanations about the
equation system are provided:

1. To treat the reversibility of the bi-molecular reaction:

2 DHAP → FBP (112)

in both compartments, partially labeled pools are included in the model. In this case a partially
labeled molecule is created by the reaction of a labeled molecule of DHAP with an unlabeled
molecule of DHAP. A partially labeled molecule of FBP, therefore, is defined as consisting of an
unlabeled and labeled part. Via the reverse reaction, one unlabeled molecule of DHAP is then
created from a partially labeled molecule of FBP. Such a partially labeled molecule of FBP can
react further on downstream the pathway to UDPG. If all reactions in between were reversible, the
partially labeled molecule could find its way back to the pool of FBP. Therefore, partially labeled
pools are included for all successors of the bio-molecular reaction until an irreversible reaction is
encountered. Partially labeled pools are included for FBPpl., FBPcyt., F6Pcyt., G6Pcyt., G1Pcyt.

and UDPG. They are denoted as x̃∗
m. Note that the partially labeled in-flux from DHAP to FBP

is given by:

f in*
2,w = 2F in

2,wx̃2(1 − x̃2), (113)

as (1− x̃m) denotes the labeled fraction of m. The factor takes in consideration that either the first
or the second molecule of DHAP is labeled and occurs in Eqs. (86) and (92). The corresponding
reverse reaction from a partially labeled molecule of FBP to one of DHAP needs a factor of 1

2 since
both labeled and unlabeled DHAP molecules are formed (Eq. (83)).

2. In Eq. (82), for 3PGA, the flux of the RuBP oxygenation F(O2,0),(1,16) has an factor of 3
5 , as only 3

carbon atoms react to 1 molecule of 3PGA. The remaining 2 carbon atoms appear in the in-flux to
the glycine pool, in Eq. (108). The flux of the RuBP carboxylation F(CO2,0),(1) has a factor of 1

2 ,
because CO2 is assumed to always be completely labeled. Therefore, only one unlabeled molecule
of 3PGA is produced, if an unlabeled molecule of RuBP reacts with an labeled molecule of CO2.
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reaction flux

5

RuBP +
1

CO2
6
−→ 2

3

3PGA F(0,CO2),(1)
5

RuBP +
0

O2
5
−→

3

3PGA +
2

Glycine F(0,O2),(1,16)
3

3PGA
3
⇄

3

DHAP F1,2

2
3

DHAP
6
⇄

6

FBPpl. F2,3
6

FBPpl.
6
−→

6

F6Ppl. F3,4
6

F6Ppl.

6
⇄

6

G6Ppl. F4,5
6

G6Ppl.

6

⇄

6

G1Ppl. F5,6
6

G1Ppl.

6

⇄

6

ADPG F6,7
6

ADPG
6
−→ O F7,O

2
3

DHAP
6

⇄

6

FBPcyt. F2,8
6

FBPcyt.

6

⇄

6

F6Pcyt. F8,9
6

F6Pcyt.

6

⇄

6

G6Pcyt. F9,10
6

G6Pcyt.

6

⇄

6

G1Pcyt. F10,11
6

G1Pcyt.

6

⇄

6

UDPG F11,12
6

F6Pcyt. +
6

UDPG
12
−→

12

Suc6P F(9,12),13
12

Suc6P
12
−→ O F13,O

6

G1Pcyt.
6
−→

6

Myo F10,14
6

Myo
6
−→ O F14,O

6

G6Pcyt. +
6

UDPG
12
−→

12

Tre6P F(10,12),15
12

Tre6P
12
−→ O F15,O

2
2

Glycine
4
−→

3

Serine +
1

CO2 F16,(17,CO2)
3

Serine
3

⇄

3

Glycerate F17,18
3

Glycerate
3
−→

3

3PGA F18,1
3

3PGA
3

⇄

3

2PGA F1,19
3

2PGA
3
−→ O F19,O

Supplemental Table M5: Reactions in the model and notation of corresponding flux in
carbon atoms participating in each modeled reaction as implemented. The number above
a metabolite indicates the number of carbon atoms in the metabolite. The number above an arrow
indicates the number of carbon atoms participating in the reaction. An out-flux of the system it denoted
by O used as an index. The indicies correspond to those appearing below the metabolite names in
Supplemental Figure M2

.
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3. The flux F16,(CO2,17) of the reaction in which 2 molecules of glycine are transformed to 1 molecule
of serine appears in Eq. (108) as an out-flux with factor 1 since 4 involved carbon atoms leave the
glycine pool. This flux has a factor of 3

4 in Eq. (109), because of the 4 carbon atoms in 2 glycine
molecules that enter the glycine decarboxylase reaction, 1 carbon atom leaves the reaction as CO2,
and 3 carbon atoms as a molecule of serine.

Exact model used for analysis

For the analysis of the mass-spectrometric data a simplification of the model is used. Some reactions
are assumed to be irreversible (see Supplemental Figure M3). The elementary flux mode via 2PGA
is constraint to zero. Therefore, only 12 independent parameter remain in the model. The net flux
distribution is described by 5 parameters φ and the exchange fluxes by 7 parameters ϕ.

A B

Supplemental Figure M3: Model representations. (A) The model from which the system of ordi-
nary differential equations is established; (B) Schematic view of the model together with the assumptions
used in the analysis. Irreversible reactions are shown with single-arrow lines, while reversible reactions
are depicted by double-arrow lines. Differences are shown in red.
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